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Information access systems impact our environment

What causes more emissions? Google search vs. a ChatGPT response
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Data center emissions probably 662% higher than
big tech claims. Can it keep up the ruse?

Emissions from in-house data centers of Google, Microsoft, Meta and
Apple may be 7.62 times higher than official tally
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Why?
Large (pre-trained) neural language models, now LLMs

- Expend high energy for training and inference
compared to traditional models

— The energy demands expected to continue growing
as size and complexity of models increase

— Data centers and other infrastructure
used to run these models also consume energy (and water?)

T Guido Zuccon et al. (2023). “Beyond CO2 Emissions: The Overlooked Impact of Water
Consumption of Information Retrieval Models.”. In: ICTIR, pp. 283-289.

Harry Scells Overview of Green IR 10



Emma Strubell et a




But what are emissions?

- Energy: amount of work done
< Measured in joules

Harry Scells Overview of Green IR



But what are emissions?

- Energy: amount of work done
< Measured in joules

— Power: energy per unit time
< Measured in watts; 1 watt = 1 joule/second
= kWh: energy consumed at a rate of 1 kilowatt in 1 hour

Harry Scells Overview of Green IR



But what are emissions?

- Energy: amount of work done
< Measured in joules

— Power: energy per unit time
< Measured in watts; 1 watt = 1 joule/second
= kWh: energy consumed at a rate of 1 kilowatt in 1 hour

- Emissions: by-products created by producing power
Measured in kgCO,e; kilograms of carbon dioxide equivalent
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Retrieval Efficiency

Speed a system can retrieve relevant information in response to a query

Factors that impact retrieval efficiency:

— Size and complexity of the search corpus
— Effectiveness of the retrieval models or techniques used

— Efficiency of the hardware and infrastructure used
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Retrieval Efficiency
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Retrieval Efficiency

Effectiveness
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Retrieval Efficiency

Okay, so what does this mean for IR?

Harry Scells Overview of Green IR
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Utilisation and Green IR

Green IR is...

Research that yields novel results while taking into account the
computational cost, encouraging a reduction in resources spent.

Roy Schwartz et al. (2020). “Green Al.”. In: Commun. ACM, pp. 54-63
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Utilisation and Green IR

Green IR is...

Research that yields novel results while taking into account the
computational cost, encouraging a reduction in resources spent.

Roy Schwartz et al. (2020). “Green Al.”. In: Commun. ACM, pp. 54-63

Neural methods require pre-trained LMs

- Expensive to create and use

- Have only become more expensive over time (e.g., GenIR methods)
Even more recently, LLMs used for IR

- Orders of magnitude more expensive to create and use

- Many applications: ranking, RAG, automatic assessment...

Missing dimension of IR evaluation: effectiveness
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Utilisation and Green IR

Green IR is...

Research that yields novel results while taking into account the
computational cost, encouraging a reduction in resources spent.

Roy Schwartz et al. (2020). “Green Al.”. In: Commun. ACM, pp. 54-63

Neural methods require pre-trained LMs

- Expensive to create and use

- Have only become more expensive over time (e.g., GenIR methods)
Even more recently, LLMs used for IR

- Orders of magnitude more expensive to create and use

- Many applications: ranking, RAG, automatic assessment...

Missing dimension of IR evaluation: effectiveness, efficiency
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Utilisation and Green IR

Green IR is...

Research that yields novel results while taking into account the
computational cost, encouraging a reduction in resources spent.

Roy Schwartz et al. (2020). “Green Al.”. In: Commun. ACM, pp. 54-63

Neural methods require pre-trained LMs

- Expensive to create and use

- Have only become more expensive over time (e.g., GenIR methods)
Even more recently, LLMs used for IR

- Orders of magnitude more expensive to create and use

- Many applications: ranking, RAG, automatic assessment...

Missing dimension of IR evaluation: effectiveness, efficiency, utilisation
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Utilisation and Green IR

Okay-so-what-does-this-meanforiR?

Okay, so how can | measure this?

Harry Scells Overview of Green IR
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Measuring Utilisation



Measuring Energy/Emissions

Energy/emissions = measures direct utilisation costs

First, measure power consumption:

Q- (pe+p,+py)
Pe= 1000

Harry Scells Measuring Utilisation
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Measuring Energy/Emissions

Energy/emissions = measures direct utilisation costs

First, measure power consumption:

Q-1-(p.+p,+py)
1000

watts—Pr =
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Measuring Energy/Emissions

Energy/emissions = measures direct utilisation costs

First, measure power consumption:

PUE\
Q-1-(p.+p,+py)

— P = 1000

watts
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Measuring Energy/Emissions

Energy/emissions = measures direct utilisation costs

First, measure power consumption:

PUE\ Rum}lng Time
Qe (petp,+py)

P 1000

watts
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Measuring Energy/Emissions

Energy/emissions = measures direct utilisation costs

First, measure power consumption:

pug  RumingTime o, paM, GPU power draw

/
T~

Qe (petp,+py)
watts— P = 1000
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Measuring Energy/Emissions

Energy/emissions = measures direct utilisation costs

First, measure power consumption:

Next, measure emissions:
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Measuring Energy/Emissions

Energy/emissions = measures direct utilisation costs

First, measure power consumption:

Next, measure emissions:

emissions”’kgcoze =0- Pr
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Measuring Energy/Emissions

Energy/emissions = measures direct utilisation costs

First, measure power consumption:

Next, measure emissions:

Power
emissions”’kgcoze =0- P; +—consumption of
experiments
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Measuring Energy/Emissions

Energy/emissions = measures direct utilisation costs

First, measure power consumption:

Next, measure emissions: avg. COze (kg) per kWh
where experiments
tt‘)}k place
Power
emissions”’kgcoze =0- P; +—consumption of
experiments

Harry Scells Measuring Utilisation
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Measuring Energy/Emissions

Energy/emissions = measures direct utilisation costs

First, measure power consumption:

Next, measure emissions:

Emissions of my search engine:

kgCO,e=0-A,-p,

Harry Scells Measuring Utilisation
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Measuring Energy/Emissions

Energy/emissions = measures direct utilisation costs

First, measure power consumption:

Next, measure emissions:

Emissions of my search engine:

Power
kgCOze =0- Aq * pg~ consumption of

a single query
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Measuring Energy/Emissions

Energy/emissions = measures direct utilisation costs

First, measure power consumption:

Next, measure emissions:

Emissions of my search engine:

No. queries
issued per unit
/time Power
kgCOze =0- Aq * pg~ consumption of

a single query
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Measuring Water

Water < measures indirect utilisation costs

Water Source

~ !
oo oo T
Warm water

Power Plant
~ 9
— =\
((ﬁ:\ Air Conditioning \}‘
/"N Coldair

/" "\ Hotair
Data Center

Chiller Cooling Tower

Electricity
Hot water
Cold water
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Measuring Water
Water < measures indirect utilisation costs

Water Source

Chiller Cooling Tower

Power Plant

(-

((ﬁ:\: Air Conditioning
Electricity
Hot water
Cold water
Warm water
/"N Coldair
/" "\ Hotair

Data Center

In data centers, water is consumed through evaporation and blow down
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Measuring Water

Water < measures indirect utilisation costs

Water Source

Power Plant ‘ Chiller Cooling Tower
((é\: Air Conditioning
Electricity
Hot water
Cold water
Warm water
/" "\ Coldair
/" "\ Hotair
Data Center

In data centers, water is consumed through evaporation and blow down
evaporation < inefficiency in chiller, blow down < flush water in system
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Measuring Water

Water < measures indirect utilisation costs

Water Source

Chiller Cooling Tower

Power Plant

(-

ﬁ: Air Conditioning
Electricity
Hot water
Cold water
Warm water
/" "\ Coldair
/" N\ Hotair

Data Center

In data centers, water is consumed through evaporation and blow down
evaporation < inefficiency in chiller, blow down < flush water in system
Water consumption of M =< on-site cooling (W,,) and power plant (W)
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Measuring Water

Water = measures indirect utilisation costs
We want to measure Wy, = Won(M) + Wy (M)

Harry Scells Measuring Utilisation
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Measuring Water

Water = measures indirect utilisation costs
We want to measure Wy, = Won(M) + Wy (M)

Won(M) = Z e(M,t) - WUEon(t)

t=1
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Measuring Water

Water = measures indirect utilisation costs
We want to measure Wy, = Won(M) + Wy (M)

Time
\T
Won(M) = Z e(M,t) - WUEon(t)

t=1
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Measuring Water

Water = measures indirect utilisation costs
We want to measure Wy, = Won(M) + Wy (M)

Time
\ Energy used

Won(M) = Z e(/\/'l/, t) - WUEon(t)

t=1
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Measuring Water

Water = measures indirect utilisation costs
We want to measure Wy, = Won(M) + Wy (M)
Time

\ Energy used

Won(M) = Z e(/\/'l/, t) WUE{n(t)
t=1

Water Usage Effectiveness?

2 Guido Zuccon et al. (2023). “Beyond CO2 Emissions: The Overlooked Impact of Water
Consumption of Information Retrieval Models.”. In: ICTIR, pp. 283-289.
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Measuring Water

Water = measures indirect utilisation costs
We want to measure Wy, = Won(M) + Wy (M)
Time

\ Energy used

Won(M) = Z e(/\/'l/, t) WUE{n(t)
t=1

Water Usage Effectiveness?

.
Worr(M) = > (M, t) - PUE(t) - WUE (1)
t=1

2 Guido Zuccon et al. (2023). “Beyond CO2 Emissions: The Overlooked Impact of Water
Consumption of Information Retrieval Models.”. In: ICTIR, pp. 283-289.
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Measuring Water

Water = measures indirect utilisation costs
We want to measure Wy, = Won(M) + Wy (M)

Time
\ Energy used

Won(M) = Z e(/\/'l/, t) WUE{n(t)
t=1

Water Usage Effectiveness?

Power Usage Efficiency
T \
Worr (M) = e(M,t) - PUE(t) - WUEq(t)
t=1

2 Guido Zuccon et al. (2023). “Beyond CO2 Emissions: The Overlooked Impact of Water
Consumption of Information Retrieval Models.”. In: ICTIR, pp. 283-289.
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Utilisation and Green IR

Okay-so-how-cantmeasure-this?

Okay, so show me what this means in IR research practice!

Harry Scells Measuring Utilisation
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How many emissions produced to obtain a single result?

Harry Scells

Emissions (kgCO2¢)

0.00190
0.00186
0.00183
0.00179
0.00175
0.00171
0.00168
0.00164
0.00160
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How many emissions produced to obtain a single result?

Harry Scells
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How many emissions produced to obtain a single result?

Harry Scells
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How many emissions produced to obtain a single result?
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How many emissions produced to obtain a single result?
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How many emissions produced to obtain a single result?

BM25

LambdaMART

DPR

uniCOIL+TILDE
TILDEv2+TILDE
monoBERT
uniCOIlL+doc2query
TILDEv2+doc2query
Fly Frankfurt to Madrid
Drive 10,000 in your car
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How much water used to produced to obtain a single result?

1000 -

800 -

600 - — BM25

—— LambdaMART
400

200 A

Water usage (Litres)

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
Month
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How much water used to produced to obtain a single result?

Harry Scells

Water usage (Litres)

1000 -

800 -

600

400 -

200 A

—— DPR
—— BM25
—— LambdaMART

Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
Month
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How much water used to produced to obtain a single result?

Harry Scells

Water usage (Litres)

1000 -

800 -

600

400 -

200 A

unicoil+TILDE
—— DPR
— BM25
—— LambdaMART

Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
Month
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How much water used to produced to obtain a single result?

Harry Scells

Water usage (Litres)

1000 -

800 -

600

400 -

200 A

unicoil+TILDE
—— DPR
— BM25
TILDEV2+TILDE —— LambdaMART

Jan

Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
Month
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How much water used to produced to obtain a single result?

Harry Scells

Water usage (Litres)

1000 A
800 1 unicoil+TILDE
—— DPR
600 1 MonoBERT — BM25
TILDEV2+TILDE —— LambdaMART
400 -
200 A
O.
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Month
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How much water used to produced to obtain a single result?

Harry Scells

Water usage (Litres)

1000 -

800 -

600

400 -

200 A

unicoil+docTquery
monoBERT
TILDEV2+TILDE

unicoil+TILDE
—— DPR
— BM25
—— LambdaMART

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Month
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How much water used to produced to obtain a single result?

1000- _\—_/
m
2 800+ .
= —— TILDEv2+docTquery unicoil+TILDE
= unicoil+docTquery —— DPR
g 6001 monoBERT — BM25
8 TILDEV2+TILDE —— LambdaMART
> 400+
—
9]
T 200 -
=
O-

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
Month
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How much water used to produced to obtain a single result?

Time of year is important to how much water is used
experiments performed in Australia

1000 -7~ N
®
5 8001 —— TILDEv2+docTquery Iinicoil+TiLDE
= unicoil+docTsuery 7/DPR
g 6001 monoBERT — =— BM25
© TILDEV2+TILDE —— LambdaMART
S 400 A
—_
Q
T 200
=
O.

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
Month
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How much water used to produced to obtain a single result?

Time of year is important to how much water is used
experiments performed in Australia

1000 - 7T~ N
m
9 800+ bnicoi
5 —— TILDEv2+docTquery nicoil+TILDE
= unicoil+docTsuery 7/DPR
g 6001 monoBERT — =— BM25
8 TILDEV2+TILDE —— LambdaMART
> 400+
—_
9]
® 2004
=
O_

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
Month

Time of day is equally important
TILDEv2+docTquery

Water usage (Litres)

3pm
— 9am

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
Month
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Is your model better than Harry’s dishwasher?

Harry Scells

< Statistics

Monthly usage

< Dec Jan Feb Mar Apr

Energy consumption

March 2025

23.40 kWhin total
0.75 kWh average per cycle

Water consumption

March 2025

271.5 litres in total
8.8 litres average per cycle

Programme usage
I
total < 17.92kgCOje
avg. 9 0.57kgCOye

Emissions (kgCO2e)

Now
o v &

1000 -

800 1

600

400 4

2001

Water usage (Litres)

—— TILDEv2+docTquery unicoil+TILDE
unicoil+docTquery —— DPR
monoBERT — BM25

~—— TILDEV2+TILDE —— LambdaMART

T T T T T T T T T T T T
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Measuring Utilisation

Month
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Corpus Subsampling



Retrieval Effectiveness

Evaluate how well our system can retrieve relevant documents

Harry Scells Corpus Subsampling
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Retrieval Effectiveness

Evaluate how well our system can retrieve relevant documents

Problem: Our evaluation will always give us some number

< Is this number meaningful?
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Retrieval Effectiveness

Evaluate how well our system can retrieve relevant documents

Problem: Our evaluation will always give us some number
< Is this number meaningful?
Solution: Ensure that our evaluation is reliable

< Observations transfer to similar scenarios with a high probability

System A > System B
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Retrieval Effectiveness

Evaluate how well our system can retrieve relevant documents

Problem: Our evaluation will always give us some number
< Is this number meaningful?
Solution: Ensure that our evaluation is reliable

< Observations transfer to similar scenarios with a high probability
System A > System B

Two main aspects impact reliability®

— Subjectiveness of relevance judgements
- Incompleteness of relevance judgements

3 Ellen M. Voorhees (2019). “The Evolution of Cranfield.”. In: Information Retrieval
Evaluation in a Changing World, pp. 45-69.
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Relevance judgements are highly subjective

Harry Scells Corpus Subsampling
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Relevance judgements are highly subjective

AT
Ko

hydrogen liquid at what temperature?
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Relevance judgements are highly subjective

hydrogen liquid at what temperature?

What is the temperature of liquid hydrogen?
Hydrogen becomes liquid at -252.87 °C

Liquid hydrogen

At room temperature, hydrogen is a gas and becomes liquified at 20.28 K
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Relevance judgements are highly subjective

hydrogen liquid at what temperature?

What is the temperature of liquid hydrogen? «

Hydrogen becomes liquid at -252.87 °C

Liquid hydrogen

At room temperature, hydrogen is a gas and becomes liquified at 20.28 K x
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Relevance judgements are highly subjective

hydrogen liquid at what temperature?

What is the temperature of liquid hydrogen?
Hydrogen becomes liquid at -252.87 °C

Liquid hydrogen

At room temperature, hydrogen is a gas and becomes liquified at 20.28 K

Harry Scells Corpus Subsampling
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Relevance judgements are highly subjective

hydrogen liquid at what temperature?

Liquid hydrogen

What is the temperature of liquid hydrogen? J x
Hydrogen becomes liquid at -252.87 °C
VS.

At room temperature, hydrogen is a gas and becomes liquified at 20.28 K

< Humans disagree substantially but rarely impacts system rankings
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Relevance judgements are often incomplete

Harry Scells Corpus Subsampling
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Relevance judgements are often incomplete

hydrogen liquid at what temperature?

What is the temperature of liquid hydrogen? «

Hydrogen becomes liquid at -252.87 °C

Liquid hydrogen

At room temperature, hydrogen is a gas and becomes liquified at 20.28 K x
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Relevance judgements are often incomplete

What color is liquid hydrogen?

At normal temperatures, hydrogen is a colorless, odorless gas.
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Relevance judgements are often incomplete

What color is liquid hydrogen?

At normal temperatures, hydrogen is a colorless, odorless gas.

Default assumption: Relevance judgements are essentially complete

— An unjudged document is assumed to be non-relevant
- New systems that retrieve new documents might be underestimated
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Measuring the reliability of experiments [ercuer20]

Ranking correlations can confirm the reliability of evaluations
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Measuring the reliability of experiments [ercuer20]

Ranking correlations can confirm the reliability of evaluations
Step 1: Create a system ranking

- Input: A set of retrieval systems and an evaluation measure
— Rank all systems by their effectiveness

System A > System B > System C > System D
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Ranking correlations can confirm the reliability of evaluations
Step 1: Create a system ranking

- Input: A set of retrieval systems and an evaluation measure
— Rank all systems by their effectiveness

System A > System B > System C > System D

Step 2: Repeat the experiment

- Observe new system rankings
— Calculate ranking correlation between old and new system ranking
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Measuring the reliability of experiments [ercuer20]

Ranking correlations can confirm the reliability of evaluations
Step 1: Create a system ranking

- Input: A set of retrieval systems and an evaluation measure
— Rank all systems by their effectiveness

System A > System B > System C > System D

Step 2: Repeat the experiment

- Observe new system rankings
— Calculate ranking correlation between old and new system ranking

=» Goal: Green and Reliable IR experiments
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How build our test collection? Step 1: Queries

Many queries, few judgements or few queries, many judgements?

| [ \ ’
‘ Few Judgements Pooling Many Judgements
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How build our test collection? Step 1: Queries

Many queries, few judgements or few queries, many judgements?

| [ \ ’
‘ Few Judgements Pooling Many Judgements

Few: E.g., one relevant document derived via click logs
Pooling: E.g., Judge the top-k results of each system (usually graded)
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How build our test collection? Step 1: Queries

Many queries, few judgements or few queries, many judgements?

Low _——— Annotation Effort \Fligh
’ | | \ ’

| [ \ ’
‘ Few Judgements Pooling Many Judgements

Few: E.g., one relevant document derived via click logs
Pooling: E.g., Judge the top-k results of each system (usually graded)

Harry Scells Corpus Subsampling 105



How build our test collection? Step 1: Queries

Many queries, few judgements or few queries, many judgements?

Low _——— Annotation Effort \Fligh
’ | | \ ’

| [ \ ’
‘ Few Judgements Pooling Many Judgements

High Impact of Incompleteness Low

Few: E.g., one relevant document derived via click logs
Pooling: E.g., Judge the top-k results of each system (usually graded)
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How build our test collection? Step 1: Queries

Many queries, few judgements or few queries, many judgements?

Low _——— Annotation Effort \Fligh
| | |

‘ |
Few Judgements Pooling
High Impact of Incompleteness Low

Many Judgements

Few: E.g., one relevant document derived via click logs
Pooling: E.g., Judge the top-k results of each system (usually graded)

How many different rankings?

Top-10 Rankings

Many judgements advantageous 0
from Green IR perspective
— 1

0o 1
T— . % 10 10 10 > 1 million

Corpus Subsampling

107

Harry Scells



How build our test collection? Step 2: Documents

What documents should we include?

Evaluation Corpora with top-k pooling typically:

- Have 50 queries
- Pool 30 to 100 systems
— Between 10 million and 1 billion documents
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How build our test collection? Step 2: Documents

What documents should we include?

Evaluation Corpora with top-k pooling typically:

- Have 50 queries
- Pool 30 to 100 systems
— Between 10 million and 1 billion documents

Considerations:

- A few million document suffice to satisfy most information needs
- We do not need to include all relevant documents
— We only need a subset that allows reliable evaluations
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How build our test collection? Step 2: Documents

What documents should we include?

Evaluation Corpora with top-k pooling typically:

- Have 50 queries

- Pool 30 to 100 systems

— Between 10 million and 1 billion documents
Considerations:

- A few million document suffice to satisfy most information needs
- We do not need to include all relevant documents
— We only need a subset that allows reliable evaluations

What documents to include to evaluate on ca. 50 pooled queries?
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How build our Evaluation Dataset? Step 2: Documents
Judegment Pool:

— Select all documents with a judegment. E.g., the top-10 pool

- Disadvantage: Effectiveness overestimated in post-hoc experiments
[Sakai'08,Frobe’23]
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— Select all documents with a judegment. E.g., the top-10 pool
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Re-Ranking:

— Select all documents retrieved by a model. E.g., the top-1k of BM25
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Judegment Pool:

— Select all documents with a judegment. E.g., the top-10 pool

- Disadvantage: Effectiveness overestimated in post-hoc experiments
[Sakai'08,Frobe’23]

Re-Ranking:

— Select all documents retrieved by a model. E.g., the top-1k of BM25
- Disadvantage: Bias towards the first stage model

Judegment Pool + Random

— All documents with a judgement plus random documents
— Disadvantage: Random documents are too easy negatives
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How build our Evaluation Dataset? Step 2: Documents
Judegment Pool:

— Select all documents with a judegment. E.g., the top-10 pool

- Disadvantage: Effectiveness overestimated in post-hoc experiments
[Sakai'08,Frobe’23]

Re-Ranking:

— Select all documents retrieved by a model. E.g., the top-1k of BM25
- Disadvantage: Bias towards the first stage model

Judegment Pool + Random

— All documents with a judgement plus random documents
— Disadvantage: Random documents are too easy negatives

Re-Pooling

- Re-Pool to k' >> k. E.g., top-100 or 1k for a top-10 judgement pool
- Addresses all disadvantages of the three above approaches
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How build our Evaluation Dataset? Step 2: Documents

System A SystemB  SystemC
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System A SystemB  SystemC
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How build our Evaluation Dataset? Step 2: Documents

System A SystemB System C Judgement Pool

k —{J]
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How build our Evaluation Dataset? Step 2: Documents

System A SystemB System C Judgement Pool
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How build our Evaluation Dataset? Step 2: Documents

System A SystemB System C Judgement Pool

| 1

D/

Subcorpus

Harry Scells Corpus Subsampling



Results of Corpus Subsampling

How big are the resulting subcorpora?

Harry Scells

Corpus Complete Subsampled
Docs. ¢, Size Docs. ¢, Size
ClueWeb09 1.0b 99% 4.0TB 03m 73% 0.9GB
ClueWeb12 0.7b 99% 45TB 01m 72% 0.5GB
Disks 4/5 0.5m 4% 06GB 04m 31% 0.5GB
MS MARCO 8.8m 99% 29GB 03m 97% 421MB

¢, =¥ amount of unjudged documents
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Results of Corpus Subsampling
Similarity to ground truth:

Subsampling T

ClueWeb09 ClueWeb12 Robust04 MS MARCO
Judgement Pool 0.944 0.941 0.983 0.978
Re-Ranking BM25 0.936 0.938 0.836 0.994
Judgement Pool + Random 0.799 0.765 0.789 0.794
Re-Pooling k' = 100 0.980 0.987 0.995 0.999
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Results of Corpus Subsampling
Similarity to ground truth:

Subsampling T

ClueWeb09 ClueWeb12 Robust04 MS MARCO
Judgement Pool 0.944 0.941 0.983 0.978
Re-Ranking BM25 0.936 0.938 0.836 0.994
Judgement Pool + Random 0.799 0.765 0.789 0.794
Re-Pooling k' =100 0.980 0.987 0.995 0.999

Re-Pooling does not overestimate effectiveness:

Subsampling Anpceeio

ClueWeb09 ClueWeb12 Robust04 MS MARCO
Judgement Pool 0.030 0.031 0.005 0.0M
Re-Ranking BM25 -0.013 -0.053 0.049 -0.005
Judgement Pool + Random 0.375 0.325 0.062 0.259
Re-Pooling k' =100 -0.030 -0.060 -0.004 -0.007
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Conclusion and Future Work
Summary

— Utilisation of our experiments is not negligible
— Corpus subsampling < reliable evaluation, small fraction of utilisation

Future Work

— Can corpus subsampling be incorporated into evaluation campaigns?
- How to holistically evaluate efficiency and effectiveness?
— Upcoming workshop on that: ReNeulR 2025 at SIGIR

Maik Frobe et al. (2025). “Corpus Subsampling:
Estimating the Effectiveness of Neural Retrieval
Models on Large Corpora.”. In: ECIR, pp. 453-471

Harry Scells Corpus Subsampling 123



	Overview of Green IR
	Measuring Utilisation
	Corpus Subsampling

