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Emma Strubell et al. (2020). “Energy and Policy Considerations for Modern Deep Learning Research.”. In: AAAI, pp. 13693–13696

NLP ML



Why?
Large (pre-trained) neural language models, now LLMs

– Expend high energy for training and inference
compared to traditional models

– The energy demands expected to continue growing
as size and complexity of models increase

– Data centers and other infrastructure
used to run these models also consume energy (and water )
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Why?
Large (pre-trained) neural language models, now LLMs

– Expend high energy for training and inference
compared to traditional models

– The energy demands expected to continue growing
as size and complexity of models increase

– Data centers and other infrastructure
used to run these models also consume energy (and water1)

1 Guido Zuccon et al. (2023). “Beyond CO2 Emissions: The Overlooked Impact of Water
Consumption of Information Retrieval Models.”. In: ICTIR, pp. 283–289.
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Emma Strubell et al. (2020). “Energy and Policy Considerations for Modern Deep Learning Research.”. In: AAAI, pp. 13693–13696

NLP ML

What about IR Research?



But what are emissions?

– Energy: amount of work done
�Measured in joules

– Power: energy per unit time
�Measured in watts; 1 watt = 1 joule/second
� kWh: energy consumed at a rate of 1 kilowatt in 1 hour

– Emissions: by-products created by producing power
Measured in kgCO2e; kilograms of carbon dioxide equivalent
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Emma Strubell et al. (2020). “Energy and Policy Considerations for Modern Deep Learning Research.”. In: AAAI, pp. 13693–13696

NLP ML

What about IR Research?
Isn’t this just retrieval efficiency?



Retrieval Efficiency
Speed a system can retrieve relevant information in response to a query

– Size and complexity of the search corpus

– Effectiveness of the retrieval models or techniques used

– Efficiency of the hardware and infrastructure used
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Okay, so what does this mean for IR?

Harry Scells Overview of Green IR 27



Utilisation and Green IR
Green IR is...

Research that yields novel results while taking into account the
computational cost, encouraging a reduction in resources spent.

Roy Schwartz et al. (2020). “Green AI.”. In: Commun. ACM, pp. 54–63
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Utilisation and Green IR
Green IR is...

Research that yields novel results while taking into account the
computational cost, encouraging a reduction in resources spent.

Roy Schwartz et al. (2020). “Green AI.”. In: Commun. ACM, pp. 54–63

Neural methods require pre-trained LMs

– Expensive to create and use
– Have only become more expensive over time (e.g., GenIR methods)

Even more recently, LLMs used for IR

– Orders of magnitude more expensive to create and use
– Many applications: ranking, RAG, automatic assessment...

Missing dimension of IR evaluation: effectiveness, efficiency

Harry Scells Overview of Green IR 37



Utilisation and Green IR
Green IR is...

Research that yields novel results while taking into account the
computational cost, encouraging a reduction in resources spent.

Roy Schwartz et al. (2020). “Green AI.”. In: Commun. ACM, pp. 54–63

Neural methods require pre-trained LMs

– Expensive to create and use
– Have only become more expensive over time (e.g., GenIR methods)

Even more recently, LLMs used for IR

– Orders of magnitude more expensive to create and use
– Many applications: ranking, RAG, automatic assessment...

Missing dimension of IR evaluation: effectiveness, efficiency, utilisation
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Okay, so what does this mean for IR?
Okay, so how can I measure this?
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Measuring Energy/Emissions

pt = Ω ⋅ t ⋅ (pc + pr + pg)
1000

Energy/emissions �measures direct utilisation costs

First, measure power consumption:
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1000
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watts

Energy/emissions �measures direct utilisation costs

First, measure power consumption:
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Measuring Energy/Emissions

pt = Ω ⋅ t ⋅ (pc + pr + pg)
1000

PUE Running Time CPU, RAM, GPU power draw

watts

Energy/emissions �measures direct utilisation costs

First, measure power consumption:
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Power 
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Power 
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kgCO2e = θ ⋅ Δq ⋅ pq
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pt = Ω ⋅ t ⋅ (pc + pr + pg)
1000

PUE Running Time CPU, RAM, GPU power draw

watts

kgCO2e = θ ⋅ ptemissions
Power 

consumption of 
experiments

avg. CO2e (kg) per kWh 
where experiments 

took place

Energy/emissions �measures direct utilisation costs

First, measure power consumption:

Next, measure emissions:

Emissions of my search engine:

Harry Scells Measuring Utilisation 52



MeasuringWater

Water�measures indirect utilisation costs

Electricity
Hot water
Cold water
Warm water
Cold air
Hot air

Cooling TowerChillerPower Plant

Water Source

Air Conditioning

Data Center

Woff(M) =
T∑
t=1
e(M, t) · PUE(t) ·WUEoff(t)
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Electricity
Hot water
Cold water
Warm water
Cold air
Hot air

Cooling TowerChillerPower Plant

Water Source

Air Conditioning

Data Center

In data centers, water is consumed through evaporation and blow down
evaporation� inefficiency in chiller, blow down� flush water in system
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MeasuringWater

Water�measures indirect utilisation costs

Electricity
Hot water
Cold water
Warm water
Cold air
Hot air

Cooling TowerChillerPower Plant

Water Source

Air Conditioning

Data Center

In data centers, water is consumed through evaporation and blow down
evaporation� inefficiency in chiller, blow down� flush water in system
Water consumption of M �on-site cooling (Won) and power plant (Woff)

Woff(M) =
T∑
t=1
e(M, t) · PUE(t) ·WUEoff(t)
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MeasuringWater

Water�measures indirect utilisation costs
We want to measureWM =Won(M) +Woff(M)

Woff(M) =
T∑
t=1
e(M, t) · PUE(t) ·WUEoff(t)
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MeasuringWater

Water�measures indirect utilisation costs
We want to measureWM =Won(M) +Woff(M)

Won(M) =
T∑
t=1
e(M, t) ·WUEon(t)

Time

Woff(M) =
T∑
t=1
e(M, t) · PUE(t) ·WUEoff(t)
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MeasuringWater

Water�measures indirect utilisation costs
We want to measureWM =Won(M) +Woff(M)

Won(M) =
T∑
t=1
e(M, t) ·WUEon(t)

Time
Energy used

Woff(M) =
T∑
t=1
e(M, t) · PUE(t) ·WUEoff(t)
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MeasuringWater

Water�measures indirect utilisation costs
We want to measureWM =Won(M) +Woff(M)

Won(M) =
T∑
t=1
e(M, t) ·WUEon(t)

Time
Energy used

Water Usage Effectiveness2

Woff(M) =
T∑
t=1
e(M, t) · PUE(t) ·WUEoff(t)

2 Guido Zuccon et al. (2023). “Beyond CO2 Emissions: The Overlooked Impact of Water
Consumption of Information Retrieval Models.”. In: ICTIR, pp. 283–289.
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MeasuringWater

Water�measures indirect utilisation costs
We want to measureWM =Won(M) +Woff(M)

Won(M) =
T∑
t=1
e(M, t) ·WUEon(t)

Time
Energy used

Water Usage Effectiveness2

Woff(M) =
T∑
t=1
e(M, t) · PUE(t) ·WUEoff(t)

Power Usage Efficiency

2 Guido Zuccon et al. (2023). “Beyond CO2 Emissions: The Overlooked Impact of Water
Consumption of Information Retrieval Models.”. In: ICTIR, pp. 283–289.
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Utilisation and Green IR
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Okay, so what does this mean for IR?
Okay, so how can I measure this?

Okay, so show me what this means in IR research practice!
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Howmuchwater used toproduced to obtain a single result?

Time of year is important to how much water is used
experiments performed in Australia
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Howmuchwater used toproduced to obtain a single result?

Time of year is important to how much water is used
experiments performed in Australia
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Time of year is important to how much water is used
experiments performed in Australia
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Time of year is important to how much water is used
experiments performed in Australia
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Time of year is important to how much water is used
experiments performed in Australia
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Howmuchwater used toproduced to obtain a single result?
Time of year is important to how much water is used
experiments performed in Australia
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Howmuchwater used toproduced to obtain a single result?
Time of year is important to how much water is used
experiments performed in Australia
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Is your model better than Harry’s dishwasher?

total � 17.92kgCO2e
avg. � 0.57kgCO2e
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Overview of Green IR

Measuring Utilisation

Corpus Subsampling



Retrieval Effectiveness
Evaluate how well our system can retrieve relevant documents
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Retrieval Effectiveness
Evaluate how well our system can retrieve relevant documents

Problem: Our evaluation will always give us some number

� Is this number meaningful?

Solution: Ensure that our evaluation is reliable

� Observations transfer to similar scenarios with a high probability

System A > System B

Two main aspects impact reliability3

– Subjectiveness of relevance judgements
– Incompleteness of relevance judgements

3 Ellen M. Voorhees (2019). “The Evolution of Cranfield.”. In: Information Retrieval
Evaluation in a Changing World, pp. 45–69.
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Relevance judgements are highly subjective
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Relevance judgements are highly subjective

Harry Scells Corpus Subsampling 93



Relevance judgements are highly subjective

�Humans disagree substantially but rarely impacts system rankings
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Relevance judgements are often incomplete
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Relevance judgements are often incomplete
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Relevance judgements are often incomplete
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Relevance judgements are often incomplete

Default assumption: Relevance judgements are essentially complete

– An unjudged document is assumed to be non-relevant
– New systems that retrieve new documents might be underestimated
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Measuring the reliability of experiments [Breuer’20]
Ranking correlations can confirm the reliability of evaluations
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Measuring the reliability of experiments [Breuer’20]
Ranking correlations can confirm the reliability of evaluations
Step 1: Create a system ranking

– Input: A set of retrieval systems and an evaluation measure
– Rank all systems by their effectiveness

System A > System B > System C > System D

Step 2: Repeat the experiment

– Observe new system rankings
– Calculate ranking correlation between old and new system ranking

�Goal: Green and Reliable IR experiments
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How build our test collection? Step 1: Queries
Many queries, few judgements or few queries, many judgements?

Few Judgements Pooling Many Judgements
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Few: E.g., one relevant document derived via click logs
Pooling: E.g., Judge the top-k results of each system (usually graded)
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How build our test collection? Step 1: Queries
Many queries, few judgements or few queries, many judgements?

Few Judgements Pooling Many Judgements

Annotation EffortLow High

Impact of IncompletenessHigh Low

Few: E.g., one relevant document derived via click logs
Pooling: E.g., Judge the top-k results of each system (usually graded)

Harry Scells Corpus Subsampling 106



How build our test collection? Step 1: Queries
Many queries, few judgements or few queries, many judgements?

Few Judgements Pooling Many Judgements

Annotation EffortLow High

Impact of IncompletenessHigh Low

Few: E.g., one relevant document derived via click logs
Pooling: E.g., Judge the top-k results of each system (usually graded)

How many different rankings?
Labels Top-10 Rankings

0 1 2 3
∞ 1 — — 11
∞ 10 10 10 > 1 million

Many judgements advantageous
from Green IR perspective
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How build our test collection? Step 2: Documents
What documents should we include?

Evaluation Corpora with top-k pooling typically:

– Have 50 queries
– Pool 30 to 100 systems
– Between 10 million and 1 billion documents
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How build our test collection? Step 2: Documents
What documents should we include?

Evaluation Corpora with top-k pooling typically:

– Have 50 queries
– Pool 30 to 100 systems
– Between 10 million and 1 billion documents

Considerations:

– A few million document suffice to satisfy most information needs
– We do not need to include all relevant documents
– We only need a subset that allows reliable evaluations
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How build our test collection? Step 2: Documents
What documents should we include?

Evaluation Corpora with top-k pooling typically:

– Have 50 queries
– Pool 30 to 100 systems
– Between 10 million and 1 billion documents

Considerations:

– A few million document suffice to satisfy most information needs
– We do not need to include all relevant documents
– We only need a subset that allows reliable evaluations

What documents to include to evaluate on ca. 50 pooled queries?
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How build our Evaluation Dataset? Step 2: Documents
Judegment Pool:

– Select all documents with a judegment. E.g., the top-10 pool
– Disadvantage: Effectiveness overestimated in post-hoc experiments

[Sakai’08,Fröbe’23]
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How build our Evaluation Dataset? Step 2: Documents
Judegment Pool:

– Select all documents with a judegment. E.g., the top-10 pool
– Disadvantage: Effectiveness overestimated in post-hoc experiments

[Sakai’08,Fröbe’23]

Re-Ranking:

– Select all documents retrieved by a model. E.g., the top-1k of BM25
– Disadvantage: Bias towards the first stage model

Judegment Pool + Random

– All documents with a judgement plus random documents
– Disadvantage: Random documents are too easy negatives
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How build our Evaluation Dataset? Step 2: Documents
Judegment Pool:

– Select all documents with a judegment. E.g., the top-10 pool
– Disadvantage: Effectiveness overestimated in post-hoc experiments

[Sakai’08,Fröbe’23]

Re-Ranking:

– Select all documents retrieved by a model. E.g., the top-1k of BM25
– Disadvantage: Bias towards the first stage model

Judegment Pool + Random

– All documents with a judgement plus random documents
– Disadvantage: Random documents are too easy negatives

Re-Pooling

– Re-Pool to k′ >> k. E.g., top-100 or 1k for a top-10 judgement pool
– Addresses all disadvantages of the three above approaches
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How build our Evaluation Dataset? Step 2: Documents

System A System B System C
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How build our Evaluation Dataset? Step 2: Documents

System A System B System C
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Results of Corpus Subsampling
How big are the resulting subcorpora?

Corpus Complete Subsampled
Docs. ̸∈J Size Docs. ̸∈J Size

ClueWeb09 1.0 b 99 % 4.0 TB 0.3 m 73 % 0.9 GB
ClueWeb12 0.7 b 99 % 4.5 TB 0.1 m 72 % 0.5 GB
Disks 4/5 0.5 m 41 % 0.6 GB 0.4 m 31 % 0.5 GB
MS MARCO 8.8 m 99 % 2.9 GB 0.3 m 97 % 42.1 MB

/∈J �amount of unjudged documents
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Results of Corpus Subsampling
Similarity to ground truth:

Subsampling τ

ClueWeb09 ClueWeb12 Robust04 MSMARCO
Judgement Pool 0.944 0.941 0.983 0.978
Re-Ranking BM25 0.936 0.938 0.836 0.994
Judgement Pool + Random 0.799 0.765 0.789 0.794
Re-Pooling k′ = 100 0.980 0.987 0.995 0.999
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Results of Corpus Subsampling
Similarity to ground truth:

Subsampling τ

ClueWeb09 ClueWeb12 Robust04 MSMARCO
Judgement Pool 0.944 0.941 0.983 0.978
Re-Ranking BM25 0.936 0.938 0.836 0.994
Judgement Pool + Random 0.799 0.765 0.789 0.794
Re-Pooling k′ = 100 0.980 0.987 0.995 0.999

Re-Pooling does not overestimate effectiveness:

Subsampling ∆nDCG@10

ClueWeb09 ClueWeb12 Robust04 MSMARCO
Judgement Pool 0.030 0.031 0.005 0.011
Re-Ranking BM25 -0.013 -0.053 0.049 -0.005
Judgement Pool + Random 0.375 0.325 0.062 0.259
Re-Pooling k′ = 100 -0.030 -0.060 -0.004 -0.007
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Conclusion and FutureWork
Summary

– Utilisation of our experiments is not negligible
– Corpus subsampling� reliable evaluation, small fraction of utilisation

Future Work

– Can corpus subsampling be incorporated into evaluation campaigns?
– How to holistically evaluate efficiency and effectiveness?
– Upcoming workshop on that: ReNeuIR 2025 at SIGIR

Maik Fröbe et al. (2025). “Corpus Subsampling:
Estimating the Effectiveness of Neural Retrieval
Models on Large Corpora.”. In: ECIR, pp. 453–471
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