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PART I
Context



NLP
ML

[1] Strubell, E. et al. 2019. Energy and Policy Considerations for Deep Learning in NLP. Proceedings of the 57th Annual Meeting of 
the Association for Computational Linguistics



Why?
• Large (pre-trained) neural language models


• Expend high energy for training and inference 
(comared to traditional models)


• The energy demands expected to continue 
growing as size and complexity of models 
increase


• Data centers and other infrastructure used to 
run these models also consume energy
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But what are emissions?
• Energy: amount of work done 
• Measured in joules 

• Power: energy per unit time 
• Measured in watts; 1 watt = 1 joule/second

• kWh: energy consumed at a rate of 1 kilowatt for 1 hour 

• Emissions: by-products created by producing power 
• Measured in kgCO2e; kilograms of carbon dioxide equivalent



NLP
ML

[1] Strubell, E. et al. 2019. Energy and Policy Considerations for Deep Learning in NLP. Proceedings of the 57th Annual Meeting of 
the Association for Computational Linguistics

What about IR research?
Isn’t this just retrieval efficiency?



Retrieval Efficiency

• Speed a system is able to retrieve relevant documents or information in 
response to a query.


• Factors that can impact retrieval efficiency include:


• Size and complexity of the corpus being searched


• Effectiveness of the retrieval models or techniques being used


• Efficiency of the hardware and infrastructure used
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Okay, so what does 
this mean for IR?



Utilisation and Green IR

[2] Schwartz, R. et al. 2020. Green AI. Communications of the ACM.

• “research that yields 
novel results while 
taking into account the 
computational cost, 
encouraging a 
reduction in resources 
spent” [2]

Green IR is…



Utilisation and Green IR
• Neural methods require pre-trained LMs

• Expensive to create

• Trend in IR towards creating IR-specific LMs

• “research that yields 
novel results while 
taking into account the 
computational cost, 
encouraging a 
reduction in resources 
spent” [2]

[3] Gao, L. and Callan, J. 2021. Condenser: a Pre-training Architecture for Dense Retrieval. Proceedings of the 2021 Conference on 
Empirical Methods in Natural Language Processing 
[4] Ma, X. et al. 2021. PROP: Pre-training with Representative Words Prediction for Ad-hoc Retrieval. Proceedings of the 14th ACM 
International Conference on Web Search and Data Mining 
[5] Tay, Y. et al. 2022. Transformer Memory as a Differentiable Search Index. arXiv preprint arXiv:2202.06991. 
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Utilisation and Green IR
• Neural methods require pre-trained LMs

• Expensive to create

• Trend in IR towards creating IR-specific LMs


• Missing dimension of IR evaluation

• Effectiveness

• Efficiency 
• Utilisation

• “research that yields 
novel results while 
taking into account the 
computational cost, 
encouraging a 
reduction in resources 
spent” [2]

Green IR is…

Pre-trained LMs come 
at a high power and 

emissions cost

[3,4,5,6]

[2] Schwartz, R. et al. 2020. Green AI. Communications of the ACM.
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Measuring emissions
• First, measure power consumption:


• Next, measure emissions:


• Emissions of my search engine:

kgCO2e = θ ⋅ Δq ⋅ pq

No. queries issued 
per unit time 

Power consumption 
of a single query

pt =
Ω ⋅ t ⋅ (pc + pr + pg)

1000

PUE
Running Time

CPU, RAM, GPU power draw

watts

kgCO2e = θ ⋅ ptemissions

avg. CO2e (kg) per kWh where 
experiments took place

Power consumption 
of experiments



Measuring power and emissions in practice
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this mean for IR?

Okay, so show me 
what it means in IR 
research practice!
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Dense retriever (bi-encoder)

BERT (cross-encoder)
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Tokeniser BERT

Scorer

Process documents offlFast inference time 
(Can even be done on CPU)

Exact match

Document expansion 
TILDE/doc2query
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PART II
Green IR in Practice



A framework for 
practitioners to 

remain mindful of 
potential costs of 

IR research



Reduce

Vs



Reduce

Vs

Expend fewer resources



Reduce

• Straightforward: simply reduce the number of experiments


• Limit expensive computations, e.g., use CPU, FPGAs over GPU


• Prior to starting any research or experiments, ask: How can I perform 
research with fewer resources? 

• Random hyper-parameter search


• CPU-based inference



Reuse



Reuse

Repurpose resources intended for one task to the same task



Reuse
• Reuse existing software artefacts such as data, code, or models


• Reuse: take something existing and repurpose it for the same task it was 
devised for


• Prior to starting any research or experiments, ask: How can I repurpose 
data, code, or other digital artefacts meant for one task to the same task? 

• Reuse large collections


• Pre-indexing common collections



Recycle



Recycle

Repurpose resources intended for one task to a different task



Recycle
• Recycle existing software artefacts such as data, code, or models


• Recycle: the action of repurposing an existing artefact for a task it was not 
originally intended for


• Prior to starting any research or experiments, ask: How can I repurpose 
existing data, code, or other digital artefacts meant for one task to a 
different task? 

• Neural query expansion


• Passage expansion with models like TILDE



reduce, reuse, recycle

• Reduce: Expend fewer resources


• Reuse: Repurpose resources intended for one task to the same task


• Recycle: Repurpose resources intended for one task to a different task



PART III
Summary



Efficiency is not just query latency

• There is a trend of “query efficient” neural models which move the heavy 
computation offline


• This computation still costs: time, hardware, energy, emissions


• It is not just a “once off” cost



Efficiency is not just latency, energy

• Data efficiency


• Learning with little data


• Frugal models, federated learning, few-shot, zero-shot, prompt learning



Summary
• Larger neural models = power-hungry hardware = utilisation of more power

• However: increased model size for higher effectiveness may not apply to IR, as 

it does to NLP and ML


• Likely trend in neural IR: go beyond PLMs designed for NLP but are specialised 
for IR… pre-train for IR

• More power and more emissions

• DSI: end-to-end transformers that encapsulate the entire indexing and 

searching architecture into a single model


• IR community at a turning point

• Bigger/mode complex models

• Bigger collections of documents, queries

• There is a cost to IR 
(+NLP, ML) research:

• Power usage: $$$

• Emissions: CO2e
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