Green Information
Retrieval Research

Harry Scells

Leipzig University, Germany



PART |

Context



MBI =

1
i

" et al. 2019. Energy and Policy Considerations for Deep Learning in NLP. Proceedings of the 57th Annual Meeting of
the Association for Computational Linguistics




Why?

e Large (pre-trained) neural language models

* EXpend high energy for training and inference
(comared to traditional models)

 The energy demands expected to continue
growing as size and complexity of models
INncrease

e Data centers and other infrastructure used to
run these models also consume energy




o TR T 4 /

[1] Strubell, 'etfal. 2019. Energy and Policy Considerations
the Association for Computational Linguistics

|

|
o




But what are emissions?

* Energy: amount of work done
* Measured In joules



But what are emissions?

* Power: energy per unit time

* Measured in watts; 1 watt = 1 joule/second
 kWh: energy consumed at a rate of 1 kilowatt for 1 hour



But what are emissions?

* Emissions: by-products created by producing power
 Measured in kgCO2e; kilograms of carbon dioxide equivalent
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What about IR research?

Isn’t thls jUSt retrieval efﬂmency’?
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[1] Strubell, E. et al. 2019. Energy and Policy Considerations for Deep Learning in NLP. Proceedings of the 57th Annual Meeting of
the Association for Computational Linguistics



Retrieval Efficiency

Speed a system is able to retrieve relevant documents or information in
response to a query.

Factors that can impact retrieval efficiency include:
* Size and complexity of the corpus being searched
o Effectiveness of the retrieval models or techniques being used

» Efficiency of the hardware and infrastructure used
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Okay, so what does
this mean for IR?




Utilisation and Green IR

Green IR is...
* “research that yields

novel results while
taking into account the
computational cost,
encouraging a
reduction in resources
spent” (2]

[2] Schwartz, R. et al. 2020. Green Al. Communications of the ACM.



Utilisation and Green IR

Green IR is... | |
* “research that yields ¢ Neural methods require pre-trained LMs

novel results while o Expensive to create

taking into account the — , Tran in IR towards creating IR-specific LMs
computational cost,

encouraging a 3,4,5,6]
reduction in resources
spent” |2]

[3] Gao, L. and Callan, J. 2021. Condenser: a Pre-training Architecture for Dense Retrieval. Proceedings of the 2021 Conference on
Empirical Methods in Natural Language Processing

[4] Ma, X. et al. 2021. PROP: Pre-training with Representative Words Prediction for Ad-hoc Retrieval. Proceedings of the 14th ACM
International Conference on Web Search and Data Mining

5] Tay, Y. et al. 2022. Transformer Memory as a Differentiable Search Index. arXiv preprint arXiv:2202.06991.

6] Zhou, Y. et al. 2022. DynamicRetriever: A Pre-training Model-based IR System with Neither Sparse nor Dense Index. arXiv preprint

2] Schwartz, R. et al. 2020. Green Al. Communications of the ACM.




Utilisation and Green IR

Green IR is... | |
* “research that yields ¢ Neural methods require pre-trained LMs

novel results while  Expensive to create

taking into account the — , Tran in IR towards creating IR-specific LMs
computational cost,

encouraging a 3,4,9,6]

5 Pre-trained LMs come
reduction in resources _
spent” [2] at a high power and
emissions cost

[3] Gao, L. and Callan, J. 2021. Condenser: a Pre-training Architecture for Dense Retrieval. Proceedings of the 2021 Conference on
Empirical Methods in Natural Language Processing

[4] Ma, X. et al. 2021. PROP: Pre-training with Representative Words Prediction for Ad-hoc Retrieval. Proceedings of the 14th ACM
International Conference on Web Search and Data Mining

5] Tay, Y. et al. 2022. Transformer Memory as a Differentiable Search Index. arXiv preprint arXiv:2202.06991.

6] Zhou, Y. et al. 2022. DynamicRetriever: A Pre-training Model-based IR System with Neither Sparse nor Dense Index. arXiv preprint

2] Schwartz, R. et al. 2020. Green Al. Communications of the ACM.




Utilisation and Green IR

Green IR is...
* “research that yields

novel results while
taking into account the
computational cost,
encouraging a
reduction in resources
spent” (2]

* Missing dimension of IR evaluation
o Effectiveness
* Efficiency

* Utilisation
2] Schwartz, R. et al. 2020. Green Al. Communications of the ACM.



Okay, so how can
| measure this?




Measuring emissions

* First, measure power consumption:



Measuring emissions

* First, measure power consumption:

B Q -1 (pc+pr+pg)
Pr= 1000




Measuring emissions

* First, measure power consumption:

B Q -1 (pc+pr+pg)
— b = 1000




Measuring emissions

* First, measure power consumption:

PUE\
Q-1- (pc+pr+pg)

1000




Measuring emissions

* First, measure power consumption:

Running Time
PUE /

T~
Q-1- (pc+pr+pg)
1000




Measuring emissions

* First, measure power consumption:

Runnlng Time
PUE CPU, RAM, GPU power draw

Q1 (pc+pr+pg>/
1000

watts — Pt =



Measuring emissions

e Next, measure emissions:



Measuring emissions

e Next, measure emissions:

kgCO_ e =0 p,



Measuring emissions

e Next, measure emissions:

emissions /kgCOZG =0 - P+



Measuring emissions

e Next, measure emissions:

emissions /kgccze — 9 . pt /Power consumption

of experiments



Measuring emissions

e Next, measure emissions:

avg. CO2e (kg) per kWh where
experiments took place

emissions /kgccze — 9 . pt /Power consumption

of experiments



Measuring emissions

* First, measure power consumption:

Runnlng Time
PUE CPU, RAM, GPU power draw

Q-1 <pc+p,,+pg>/
1000

watts — P =

e Next, measure emissions:

avg. COze (kg) per kWh where
experiments took place

/ 5 _
emissions /kgccze — 9 . pt __—rower con_s.umptlon

of experiments

 Emissions of my search engine:

kgCO,e =0-A, -p,



Measuring emissions

* First, measure power consumption:

Runnlng Time
PUE CPU, RAM, GPU power draw

Q-1 <pc+pr+pg>/
1000

watts — P =

e Next, measure emissions:

avg. COze (kg) per kWh where
experiments took place

/ 5 _
emissions /kgccze — 9 . pt __—rower con_s.umptlon

of experiments

 Emissions of my search engine:

Power consumption
kgCOze — H ) Aq ) pq‘/ of a single query



Measuring emissions

* First, measure power consumption:

Runnlng Time
PUE CPU, RAM, GPU power draw

Q-1 (pc+pr+pg>/
1000

watts — P =

e Next, measure emissions:

avg. COze (kg) per kWh where
experiments took place

/ 5 §
emissions /kgccze — 9 . pt __—+ower consumption

of experiments

 Emissions of my search engine:

No. queries issued
per unit time

/ Power consumption
kgCOze — H ) Aq ) pq‘/ of a single query



Measuring power and emissions In practice

Name CPU DRAM GPU Network | Repository

CodeCarbon [71]

pyJoules

energyusage [47]
Carbontracker [3]

Experiment Impact Tracker [33]
Cumulator [81]

https://github.com/mlco2/codecarbon
https://github.com/powerapi-ng/pyJoules
https://github.com/responsibleproblemsolving/energy-usage
https://github.com/lfwa/carbontracker
https://github.com/Breakend/experiment-impact-tracker
https://github.com/epfl-iglobalhealth/cumulator

NSNSNSNNKS
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from codecarbon import EmissionsTracker

tracker = EmissionsTracker ()
tracker.start ()

# Experiment code goes here
tracker.stop ()



Okay, so show me
what it means in IR
research practice!



Experimental Setup Overview

e Methods:

e BM25

e LambdaMART
e DPR

e monoBERT
 uniCOIL

e TILDEVZ2



Experimental Setup Overview

e Methods:

e BM25

e LambdaMART
e DPR

e monoBERT
 uniCOIL

e TILDEVZ2
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Experimental Setup Overview

e Methods:
e BM25
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Experimental Setup Overview

e Methods:
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Experimental Setup Overview

 Methods:
* BM25 Non-neural T
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Experimental Setup Overview

e Methods:
e BM25
Non-neural
~*_LambdaMART
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Query Document




Experimental Setup Overview

e Methods:
e BM25

Non-neural
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Process documents offline



Experimental Setup Overview

 Methods:
e BM25
Non-neural
LambdaMAR T
e DPR - = Dense retriever (bi-encoder)
| ' Scorer
i * monoBERT - i BERT (cross-encoder)

W | Ty
L — parse retrievers
|+ TILDEv2 i
e s— Tokeniser BERT

Query Document

Fast inference time Process documents offline
(Can even be done on CPU)



Experimental Setup Overview

e Methods:

e BM25
Non-neural
+_LambdaMART I
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~ | Exact match
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Document expansion
TILDE/doc2query



Experimental Setup Overview

 EXxperiments:



Experimental Setup Overview

 EXxperiments:
* How many emissions do these methods
produce to obtain an experimental result?



Experimental Setup Overview

 EXxperiments:

e What are the effectiveness-utilisation
trade-offs of these methods?
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How many emissions do these methods produce
to obtain an experimental result?

* Methods:
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How many emissions do these methods produce
to obtain an experimental result?

* Methods:
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How many emissions do these methods produce
to obtain an experimental result?

* Methods:
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How many emissions do these methods produce
to obtain an experimental result?

* Methods:
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How many emissions do these methods produce

Emissions (kgCO2e)

to obtain an experimental result?
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How many emissions do these methods produce
to obtain an experimental result?

Emissions (kgCO2e)
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How many emissions do these methods produce
to obtain an experimental result?

Emissions (kgCO2e)
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How many emissions do these methods produce
to obtain an experimental result?
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How many emissions do these methods produce
to obtain an experimental result?

Emissions (kgCO2e)
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How many emissions do these methods produce
to obtain an experimental result?

Emissions (kgCO2e)
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What are the effectiveness-utilisation trade-offs of

- these methods?

®monoBERT
0356 gunieBIL+¢resauery
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What are the effectiveness-utilisation trade-offs of

. these methods?
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What are the effectiveness-utilisation trade-offs of

- these methods?

®monoBERT ———
®uniCOIL ®uniCOIL+doc2query

0.356

0.331 ‘B DEv2+TILDE @®TILDEv2+doc2query

0.307

More utilisation
0.283

Higher effﬁctiveness

0.258

Effectiveness (MRR@10)

0.234

0.209

0.185 ®BM25
0 20 40 60 80 100 120 140

Emissions (kgCO2e¢)



What are the effectiveness-utilisation trade-offs of
these methods?
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What are the effectiveness-utilisation trade-offs of

- these methods?
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PART Il

Green IR in Practice



A framework for
practitioners to
remain mindful of
potential costs of
IR research



Vs




Expend fewer resources



Reduce

o Straightforward: simply reduce the number of experiments
* Limit expensive computations, e.g., use CPU, FPGAs over GPU

* Prior to starting any research or experiments, ask: How can | perform
research with fewer resources?

 Random hyper-parameter search

e CPU-based inference






Repurpose resources intended for one task to the same task




Reuse

* Reuse existing software artefacts such as data, code, or models

 Reuse: take something existing and repurpose it for the same task it was
devised for

* Prior to starting any research or experiments, ask: How can | repurpose
data, code, or other digital artefacts meant for one task to the same task?

* Reuse large collections

* Pre-indexing common collections






Repurpose resources intended for one task to a different task



Recycle

* Recycle existing software artefacts such as data, code, or models

* Recycle: the action of repurposing an existing artefact for a task it was not
originally intended for

* Prior to starting any research or experiments, ask: How can | repurpose
existing data, code, or other digital artefacts meant for one task to a
different task?

* Neural query expansion

 Passage expansion with models like TILDE



reduce, reuse, recycle

 Reduce: Expend fewer resources
 Reuse: Repurpose resources intended for one task to the same task

 Recycle: Repurpose resources intended for one task to a different task



PART Il

Summary



Efficiency Is not just query latency

 There is a trend of “query efficient” neural models which move the heavy
computation offline

* This computation still costs: time, hardware, energy, emissions

e |t is not just a “once off” cost



Efficiency Is not just latency, energy

e Data efficiency
* Learning with little data

 Frugal models, federated learning, few-shot, zero-shot, prompt learning



Summary

 Larger neural models = power-hungry hardware = utilisation of more power

 However: increased model size for higher effectiveness may not apply to IR, as
it does to NLP and ML
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e Likely trend in neural IR: go beyond PLMs designed for NLP but are specialised
for IR... pre-train for IR

 More power and more emissions

 DSI: end-to-end transformers that encapsulate the entire indexing and
searching architecture into a single model
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Summary

 Larger neural models = power-hungry hardware = utilisation of more power

 However: increased model size for higher effectiveness may not apply to IR, as
it does to NLP and ML

e Likely trend in neural IR: go beyond PLMs designed for NLP but are specialised
for IR... pre-train for IR

 More power and more emissions

 DSI: end-to-end transformers that encapsulate the entire indexing and
searching architecture into a single model

e IR community at a turning point * Thereis a costto IR
« Bigger/more complex models (+NLF, ML) research:
 Bigger collections of documents, queries * Power usage: $$%

e Emissions: CO-e



