Efficiency and Energy in Neural Information Retrieval

Harry Scells Alexander von Humboldt Research Fellow Leipzig University https://scells.me

TH Köln · April 24, 2024

[Scells et al. 2022]

Efficient Listwise Neural Search

[Schlatt et. al 2024]

Estimating Cost of IR (discussion)

[1] Strubell, E. et al. 2019. Energy and Policy Considerations for Deep Learning in NLP. Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics

Green IR Why?

Large (pre-trained) neural language models

- Expend high energy for training and inference (compared to traditional models)
- The energy demands expected to continue growing as size and complexity of models increase
- Data centers and other infrastructure used to run these models also consume energy (and water [Zuccon et al. 2023])

NLP

What about IR research?

ML

[1] Strubell, E. et al. 2019. Energy and Policy Considerations for Deep Learning in NLP. Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics

But what are emissions?

- Energy: amount of work done
 - → Measured in joules
- **Power**: energy per unit time
 - → Measured in watts; 1 watt = 1 joule/second
 - → kWh: energy consumed at a rate of 1 kilowatt in 1 hour
- Emissions: by-products created by producing power
 Measured in kgCO₂e; kilograms of carbon dioxide equivalent

NLP

What about IR research? Isn't this just retrieval efficiency?

ML

[1] Strubell, E. et al. 2019. Energy and Policy Considerations for Deep Learning in NLP. Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics

Speed a system can retrieve relevant information in response to a query.

Factors that can impact retrieval efficiency include:

- Size and complexity of the corpus being searched
- Effectiveness of the **retrieval models** or techniques being used
- Efficiency of the hardware and infrastructure used

Okay, so what does this mean for IR?

Green IR is...

"research that yields novel results while taking into account the computational cost, encouraging a reduction in resources spent"

(Schwartz, R. et al. 2020. Green Al. Communications of the ACM)

Green IR is...

"research that yields novel results while taking into account the computational cost, encouraging a reduction in resources spent"

(Schwartz, R. et al. 2020. Green AI. Communications of the ACM)

Neural methods require pre-trained LMs

- Expensive to create
- □ Becoming even more expensive (see: DSI and friends)

Green IR is...

"research that yields novel results while taking into account the computational cost, encouraging a reduction in resources spent"

(Schwartz, R. et al. 2020. Green AI. Communications of the ACM)

Neural methods require pre-trained LMs

- Expensive to create
- □ Becoming even more expensive (see: DSI and friends)

Pre-trained LMs come at a high power and emissions cost

Green IR is...

"research that yields novel results while taking into account the computational cost, encouraging a reduction in resources spent"

(Schwartz, R. et al. 2020. Green AI. Communications of the ACM)

Neural methods require pre-trained LMs

- Expensive to create
- □ Becoming even more expensive (see: DSI and friends)

Pre-trained LMs come at a high power and emissions cost

- Missing dimension of IR evaluation
 - Effectiveness
 - Efficiency
 - Utilisation

Okay, so what does this mean for IR? Okay, so how can I measure this?

$$p_t = \frac{\Omega \cdot t \cdot (p_c + p_r + p_g)}{1000}$$

watts
$$p_t = \frac{\Omega \cdot t \cdot (p_c + p_r + p_g)}{1000}$$

PUE
watts
$$p_t = \frac{\Omega \cdot t \cdot (p_c + p_r + p_g)}{1000}$$

PUE Running Time CPU, RAM, GPU power draw

$$p_t = \frac{\Omega \cdot t \cdot (p_c + p_r + p_g)}{1000}$$

First, measure power consumption:

Next, measure emissions:

First, measure power consumption:

PUE Running Time CPU, RAM, GPU power draw

$$\Omega \cdot t \cdot (p_c + p_r + p_g)$$
watts $p_t = \frac{1000}{1000}$

Next, measure emissions:

emissions
$$\mathbf{kgCO}_2 \mathbf{e} = \theta \cdot p_t$$

First, measure power consumption:

Next, measure emissions:

emissions $\rightarrow \mathbf{kgCO}_2 \mathbf{e} = \theta \cdot p_t$ Consumption of experiments

First, measure power consumption:

 $PUE \qquad PUE \qquad PUE \qquad PUE \qquad PUE \qquad PUE \qquad PUE \qquad Put \qquad P_t = \frac{\Omega \cdot t \cdot (p_c + p_r + p_g)}{1000}$ Next, measure emissions: $avg. CO_{2}e \text{ (kg) per kWh} \text{ where experiments} \text{ took place}$ $emissions \rightarrow kgCO_{2}e = \theta \cdot p_t \qquad Consumption of experiments}$

Emissions of my search engine:

$$\mathbf{kgCO}_{2}\mathbf{e} = \theta \cdot \Delta_{q} \cdot p_{q}$$

First, measure power consumption:

 $PUE \qquad PUE \qquad P_t = \frac{Q \cdot t \cdot (p_c + p_r + p_g)}{1000}$ Next, measure emissions: $avg. CO_{2}e \text{ (kg) per kWh} \text{ where experiments} \text{ took place}$ $emissions \rightarrow kgCO_{2}e = \theta \cdot p_t \qquad Power \text{ consumption of experiments}}$

Emissions of my search engine:

 $\mathbf{kgCO}_{2}\mathbf{e} = \theta \cdot \Delta_{q} \cdot p_{q} \underbrace{\qquad \text{Power}}_{\text{a single query}}$

Okay, so what does this mean for IR? Okay, so how can I measure this? Okay, so show me what it means in IR research practice!

How many emissions produced to obtain a single result?

How many emissions produced to obtain a single result?

How many emissions produced to obtain a single result?

Reduce, Reuse, Recycle

Reduce \rightarrow expend fewer resources

- □ Straightforward: simply reduce the number of experiments
- □ Limit expensive computations, e.g., use CPU, FPGAs over GPU
- Prior to starting any research or experiments, ask: How can I perform research with fewer resources?

Reduce, Reuse, Recycle

Reduce → expend fewer resources

- □ Straightforward: simply reduce the number of experiments
- □ Limit expensive computations, e.g., use CPU, FPGAs over GPU
- Prior to starting any research or experiments, ask: How can I perform research with fewer resources?

Reuse → repurpose resources intended for one task to the same task

- □ Reuse existing software artefacts such as data, code, or models
- □ Take something existing and repurpose it for the same task it was devised for
- Prior to starting any research or experiments, ask: How can I repurpose data or code meant for one task to the same task?

Reduce, Reuse, Recycle

Reduce \rightarrow expend fewer resources

- □ Straightforward: simply reduce the number of experiments
- Limit expensive computations, e.g., use CPU, FPGAs over GPU
- Prior to starting any research or experiments, ask: How can I perform research with fewer resources?

Reuse → repurpose resources intended for one task to the same task

- □ Reuse existing software artefacts such as data, code, or models
- Take something existing and repurpose it for the same task it was devised for
- Prior to starting any research or experiments, ask: How can I repurpose data or code meant for one task to the same task?

Recycle → repurpose resources intended for one task to a different task

- Recycle existing software artefacts such as data, code, or models
- Repurposing an existing artefact for a task it was not originally intended for
- Prior to starting any research or experiments, ask: How can I repurpose existing data or code meant for one task to a different task?

[Scells et al. 2022]

Efficient Listwise Neural Search

[Schlatt et. al 2024]

Estimating Cost of IR (discussion)

Motivation [Schlatt et. al 2024]

Learning task: Given a set of objects, rank them according to a ranking criterion

- Ranking of documents from a set of documents and a query
- Existing transformer architecture cannot model this task effectively
- Two properties: Permutation invariance and cross-document information

Motivation [Schlatt et. al 2024]

Learning task: Given a set of objects, rank them according to a ranking criterion

- Ranking of documents from a set of documents and a query
- Existing transformer architecture cannot model this task effectively
- Two properties: Permutation invariance and cross-document information

Existing architectures model either one of these properties but never both

- □ Trade off effective ranking for permutation invariance → Pointwise
- □ Trade off efficient ranking for cross-document information → Listwise

Efficient Listwise Neural Search Model Architecture

Pointwise

- More efficient at the expense of effectiveness.
- Permutation-invariant, no cross-document information.
- Scaleable: each query-document pair is scored.

Listwise

- More effective at the expense of efficiency.
- Non-permutation-invariant, cross-document information.
- Unscaleable: All permutations of query-documents is scored.

Efficient Listwise Neural Search Model Architecture

Pointwise

- More efficient at the expense of effectiveness.
- Permutation-invariant, no cross-document information.
- Scaleable: each query-document pair is scored.

Listwise

- More effective at the expense of efficiency.
- Non-permutation-invariant, cross-document information.
- Unscaleable: All permutations of query-documents is scored.

State of the Art

© Harry Scells 2024

Model Architecture

Document scoring:

- Each permutation of documents is fed into model.
- Reason: Transformer is sequence modeller; order of documents biases the score.

Model Architecture

Document scoring:

- Each permutation of documents is fed into model.
- Reason: Transformer is sequence modeller; order of documents biases the score.
- Task: Predict ordering preference of documents given query.

Model Architecture

Document scoring:

- Each permutation of documents is fed into model.
- Reason: Transformer is sequence modeller; order of documents biases the score.
- Task: Predict ordering preference of documents given query.
- Score computed by aggregating preferences.

59

Model Architecture

Set-Encoder document scoring:

 Each query-document pair only needs to be scored once.

Set-Encoder

Query Document tokens tokens © Harry Scells 2024

token

Model Architecture

Set-Encoder document scoring:

- Each query-document pair only needs to be scored once.
- Share cross-document information through attention mechanism.
- Reset positional information to make scores permutation invariant.

Model Architecture

Set-Encoder document scoring:

- Each query-document pair only needs to be scored once.
- Share cross-document information through attention mechanism.
- Reset positional information to make scores permutation invariant.
- Score computed directly for all query-document pairs.

Modelling Cross-Document Interactions with Attention

 $\text{Attention}(\mathbf{Q},\mathbf{K},\mathbf{V}) = \text{softmax}(\tfrac{\mathbf{Q}\mathbf{K}^T}{\sqrt{h}})V$

Modelling Cross-Document Interactions with Attention

 $\text{Attention}(\mathbf{Q},\mathbf{K},\mathbf{V}) = \text{softmax}(\frac{\mathbf{Q}\mathbf{K}^{T}}{\sqrt{h}})V$

Modelling Cross-Document Interactions with Attention

Attention(Q, K, V) = softmax($\frac{QK^T}{\sqrt{h}}$)V

For \mathbf{d}_i , let $\bar{K}^i = [K_1^j : j \neq i]$

Modelling Cross-Document Interactions with Attention

Attention(Q, K, V) = softmax($\frac{QK^T}{\sqrt{h}}$)V

For d_i , let $\bar{K}^i = [K_1^j : j \neq i]$ For d_i , let $\bar{V}^i = [V_1^j : j \neq i]$

Modelling Cross-Document Interactions with Attention

Attention(Q, K, V) = softmax($\frac{QK^T}{\sqrt{h}}$)V

For d_i , let $\bar{K}^i = [K_1^j : j \neq i]$ For d_i , let $\bar{V}^i = [V_1^j : j \neq i]$

Cross-document attention for d_i : Attention $(Q^i, [K^i \overline{K}^i], [V^i \overline{V}^i])$

Attention Visualised

Attention Visualised

Set-Encoder attends to other documents in early layers, then the document to score in final layers.

Results: Ranking Effectiveness

Model	Parameters	Effectiveness (nDCG@10)
monoBERT base	110M	0.379
monoBERT large	340M	0.381
monoT5 base	220M	0.376
monoT5 large	3B	0.410
LiT5-Distill	220M	0.406
Set-Encoder	110M	0.406

Results: Ranking Effectiveness

Model	Parameters	Effectiveness (nDCG@10)
monoBERT base	110M	0.379
monoBERT large	340M	0.381
monoT5 base	220M	0.376
monoT5 large	3B	0.410
LiT5-Distill	220M	0.406
Set-Encoder	110M	0.406

Set-Encoder has same effectiveness of SOTA listwise model with half the parameters.

Results: Ranking Effectiveness

Model	Parameters	Effectiveness (nDCG@10)
monoBERT base	110M	0.379
monoBERT large	340M	0.381
monoT5 base	220M	0.376
monoT5 large	3B	0.410
LiT5-Distill	220M	0.406
Set-Encoder	110M	0.406

Set-Encoder has same effectiveness of SOTA listwise model with half the parameters.

Set-Encoder has similar effectiveness to SOTA pointwise model with 3B fewer parameters.
Efficient Listwise Neural Search

Robustness to Initial Ranking Permutations

Efficient Listwise Neural Search

Robustness to Initial Ranking Permutations

Irrespective of initial document ranking, Set-Encoder has same effectiveness.

Efficient Listwise Neural Search

Robustness to Initial Ranking Permutations

Irrespective of initial document ranking, Set-Encoder has same effectiveness.

SOTA Listwise model makes document ranking worse when given ideal ranking.

[Scells et al. 2022]

Efficient Listwise Neural Search

[Schlatt et. al 2024]

Estimating Cost of IR (discussion)

Estimating Cost of IR

Starting the Discussion

What do we mean by cost?

- cost → system (time, money, energy)
 - □ training efficiency?
 - □ inference efficiency?
 - energy utilisation?

cost → user (cost, effort, load) [McGregor et al. 2023]

- □ cognitive costs, fatigue, spend or conserve my resources to achieve goal?
- cognitive or physical effort, task complexity, total labour/time to achieve goal
- cognitive load, demands, properties of task that regulate exertion, overload