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2 Efficient Listwise Neural Search
[Schlatt et. al 2024]

3 Estimating Cost of IR (discussion)
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the 57th Annual Meeting of the Association for Computational Linguistics



Green IR
Why?

Large (pre-trained) neural language models

❑ Expend high energy for training and inference
(compared to traditional models)

❑ The energy demands expected to continue growing
as size and complexity of models increase

❑ Data centers and other infrastructure
used to run these models also consume energy (and water [Zuccon et al. 2023])
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Green IR
But what are emissions?

❑ Energy: amount of work done
➜ Measured in joules

❑ Power: energy per unit time
➜ Measured in watts; 1 watt = 1 joule/second
➜ kWh: energy consumed at a rate of 1 kilowatt in 1 hour

❑ Emissions: by-products created by producing power
Measured in kgCO2e; kilograms of carbon dioxide equivalent
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Isn’t this just retrieval efficiency?

NLP ML

[1] Strubell, E. et al. 2019. Energy and Policy Considerations for Deep Learning in NLP. Proceedings of 
the 57th Annual Meeting of the Association for Computational Linguistics

What about IR research?



Green IR
Retrieval Efficiency

Speed a system can retrieve relevant information in response to a query.

Factors that can impact retrieval efficiency include:

❑ Size and complexity of the corpus being searched

❑ Effectiveness of the retrieval models or techniques being used

❑ Efficiency of the hardware and infrastructure used

8 © Harry Scells 2024



Green IR
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Okay, so what does this mean for IR?
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Green IR
Utilisation and Green IR

Green IR is...

“research that yields novel results while taking into account the computational cost,
encouraging a reduction in resources spent”

(Schwartz, R. et al. 2020. Green AI. Communications of the ACM)

16 © Harry Scells 2024



Green IR
Utilisation and Green IR

Green IR is...

“research that yields novel results while taking into account the computational cost,
encouraging a reduction in resources spent”

(Schwartz, R. et al. 2020. Green AI. Communications of the ACM)

Neural methods require pre-trained LMs

❑ Expensive to create

❑ Becoming even more expensive (see: DSI and friends)

17 © Harry Scells 2024



Green IR
Utilisation and Green IR

Green IR is...

“research that yields novel results while taking into account the computational cost,
encouraging a reduction in resources spent”

(Schwartz, R. et al. 2020. Green AI. Communications of the ACM)

Neural methods require pre-trained LMs

❑ Expensive to create

❑ Becoming even more expensive (see: DSI and friends)

Pre-trained LMs come at a high power and emissions cost

18 © Harry Scells 2024



Green IR
Utilisation and Green IR

Green IR is...

“research that yields novel results while taking into account the computational cost,
encouraging a reduction in resources spent”

(Schwartz, R. et al. 2020. Green AI. Communications of the ACM)

Neural methods require pre-trained LMs

❑ Expensive to create

❑ Becoming even more expensive (see: DSI and friends)

Pre-trained LMs come at a high power and emissions cost

Missing dimension of IR evaluation

❑ Effectiveness
❑ Efficiency
❑ Utilisation
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Okay, so what does this mean for IR?
Okay, so how can I measure this?
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pt = Ω ⋅ t ⋅ (pc + pr + pg)
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First, measure power consumption:

Next, measure emissions:

Emissions of my search engine:

30 © Harry Scells 2024



kgCO2e = θ ⋅ Δq ⋅ pq

Power 
consumption of 
a single query

pt = Ω ⋅ t ⋅ (pc + pr + pg)
1000

PUE Running Time CPU, RAM, GPU power draw

watts

kgCO2e = θ ⋅ ptemissions
Power 

consumption of 
experiments

avg. CO2e (kg) per kWh 
where experiments 

took place

Green IR
Measuring Emissions

First, measure power consumption:

Next, measure emissions:

Emissions of my search engine:

31 © Harry Scells 2024



kgCO2e = θ ⋅ Δq ⋅ pq

No. queries 
issued per unit 

time Power 
consumption of 
a single query

pt = Ω ⋅ t ⋅ (pc + pr + pg)
1000

PUE Running Time CPU, RAM, GPU power draw

watts

kgCO2e = θ ⋅ ptemissions
Power 

consumption of 
experiments

avg. CO2e (kg) per kWh 
where experiments 

took place

Green IR
Measuring Emissions

First, measure power consumption:

Next, measure emissions:

Emissions of my search engine:

32 © Harry Scells 2024



Eff
ec

tiv
en

es
s

Utilisation

Efficiency

Green IR
Utilisation and Green IR

Okay, so what does this mean for IR?
Okay, so how can I measure this?

Okay, so show me what it means in IR research practice!
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What are the effectiveness-utilisation trade-offs of these methods?
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Green IR
Reduce, Reuse, Recycle

Reduce ➜ expend fewer resources

❑ Straightforward: simply reduce the number of experiments
❑ Limit expensive computations, e.g., use CPU, FPGAs over GPU
❑ Prior to starting any research or experiments, ask: How can I perform

research with fewer resources?
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Reuse ➜ repurpose resources intended for one task to the same task

❑ Reuse existing software artefacts such as data, code, or models
❑ Take something existing and repurpose it for the same task it was devised for
❑ Prior to starting any research or experiments, ask: How can I repurpose data

or code meant for one task to the same task?
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Green IR
Reduce, Reuse, Recycle

Reduce ➜ expend fewer resources

❑ Straightforward: simply reduce the number of experiments
❑ Limit expensive computations, e.g., use CPU, FPGAs over GPU
❑ Prior to starting any research or experiments, ask: How can I perform

research with fewer resources?

Reuse ➜ repurpose resources intended for one task to the same task

❑ Reuse existing software artefacts such as data, code, or models
❑ Take something existing and repurpose it for the same task it was devised for
❑ Prior to starting any research or experiments, ask: How can I repurpose data

or code meant for one task to the same task?

Recycle ➜ repurpose resources intended for one task to a different task

❑ Recycle existing software artefacts such as data, code, or models
❑ Repurposing an existing artefact for a task it was not originally intended for
❑ Prior to starting any research or experiments, ask: How can I repurpose

existing data or code meant for one task to a different task?
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1 Green IR
[Scells et al. 2022]

2 Efficient Listwise Neural Search
[Schlatt et. al 2024]

3 Estimating Cost of IR (discussion)
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Efficient Listwise Neural Search
Motivation [Schlatt et. al 2024]

Learning task: Given a set of objects, rank them according to a ranking criterion

❑ Ranking of documents from a set of documents and a query

❑ Existing transformer architecture cannot model this task effectively

❑ Two properties: Permutation invariance and cross-document information

{  }
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Efficient Listwise Neural Search
Motivation [Schlatt et. al 2024]

Learning task: Given a set of objects, rank them according to a ranking criterion

❑ Ranking of documents from a set of documents and a query

❑ Existing transformer architecture cannot model this task effectively

❑ Two properties: Permutation invariance and cross-document information

{  }
Existing architectures model either one of these properties but never both

❑ Trade off effective ranking for permutation invariance ➜ Pointwise

❑ Trade off efficient ranking for cross-document information ➜ Listwise
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Efficient Listwise Neural Search
Model Architecture

Pointwise

❑ More efficient at the expense of
effectiveness.

❑ Permutation-invariant, no
cross-document information.

❑ Scaleable: each
query-document pair is scored.

Listwise

❑ More effective at the expense
of efficiency.

❑ Non-permutation-invariant,
cross-document information.

❑ Unscaleable: All permutations
of query-documents is scored.
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Efficient Listwise Neural Search
Model Architecture

Batch

State of the Art
Query

Doc 3

Doc 2

Doc 1

CLS
token

Query
tokens

Document
tokens

Pointwise

❑ More efficient at the expense of
effectiveness.

❑ Permutation-invariant, no
cross-document information.

❑ Scaleable: each
query-document pair is scored.

Listwise

❑ More effective at the expense
of efficiency.

❑ Non-permutation-invariant,
cross-document information.

❑ Unscaleable: All permutations
of query-documents is scored.
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Efficient Listwise Neural Search
Model Architecture
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Document scoring:

❑ Each permutation of
documents is fed into model.

❑ Reason: Transformer is
sequence modeller; order of
documents biases the score.
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Model Architecture
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Document scoring:

❑ Each permutation of
documents is fed into model.

❑ Reason: Transformer is
sequence modeller; order of
documents biases the score.

❑ Task: Predict ordering
preference of documents given
query.
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Efficient Listwise Neural Search
Model Architecture
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Document scoring:

❑ Each permutation of
documents is fed into model.

❑ Reason: Transformer is
sequence modeller; order of
documents biases the score.

❑ Task: Predict ordering
preference of documents given
query.

❑ Score computed by
aggregating preferences.
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Efficient Listwise Neural Search
Model Architecture
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Set-Encoder document scoring:

❑ Each query-document pair only
needs to be scored once.
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Set-Encoder document scoring:

❑ Each query-document pair only
needs to be scored once.

❑ Share cross-document
information through attention
mechanism.

❑ Reset positional information to
make scores permutation
invariant.
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Model Architecture

...

...

...

...

...

...

...

...

...

➜ ➜

Batch

1.5

0.7

0.3

0.9

0.5

0.1

➜

P1 > P2 > P3
P2 > P1 > P3
P1 > P3 > P2
P1 > P2 > P3
P1 > P2 > P3
P1 > P3 > P2

Permutation-invariant
passage ranking

State of the ArtSet-Encoder

Doc 3

Doc 2

Doc 1

Query

CLS
token

Query
tokens

Document
tokens

In
te

r-p
as

sa
ge

 a
tte

nt
io

n

Set-Encoder document scoring:

❑ Each query-document pair only
needs to be scored once.

❑ Share cross-document
information through attention
mechanism.

❑ Reset positional information to
make scores permutation
invariant.

❑ Score computed directly for all
query-document pairs.
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Efficient Listwise Neural Search
Modelling Cross-Document Interactions with Attention

q, d₁

q, d₂

q, d₁

q, d₂

Attention(Q,K,V) = softmax(QKT
√
h
)V

For di, let K̄ i = [Kj
1 : j ̸= i]

For di, let V̄ i = [V j
1 : j ̸= i]

Cross-document attention for di:
Attention(Qi, [KiK̄i], [ViV̄i])
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Efficient Listwise Neural Search
Modelling Cross-Document Interactions with Attention
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Efficient Listwise Neural Search
Attention Visualised

[CLS]

Query

    Document

Other [CLS]

To
ke

n 
Ty

pe

0.28 0.15 0.26 0.21 0.22 0.27 0.26 0.18 0.06 0.02 0.05 0.02

0.06 0.15 0.27 0.23 0.25 0.28 0.27 0.22 0.11 0.08 0.15 0.53

0.66 0.70 0.47 0.55 0.52 0.44 0.47 0.59 0.83 0.90 0.80 0.45

Typical Cross-Encoder

1 2 3 4 5 6 7 8 9 10 11 12
Layer

[CLS]

Query

   Document

Other [CLS]

To
ke

n 
Ty

pe

0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.00

0.02 0.01 0.01 0.01 0.01 0.00 0.00 0.01 0.03 0.02 0.09 0.38

0.20 0.16 0.04 0.07 0.08 0.02 0.02 0.04 0.22 0.39 0.29 0.37

0.77 0.82 0.94 0.92 0.90 0.97 0.97 0.95 0.74 0.58 0.61 0.25

Set-Encoder
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0.28 0.15 0.26 0.21 0.22 0.27 0.26 0.18 0.06 0.02 0.05 0.02

0.06 0.15 0.27 0.23 0.25 0.28 0.27 0.22 0.11 0.08 0.15 0.53

0.66 0.70 0.47 0.55 0.52 0.44 0.47 0.59 0.83 0.90 0.80 0.45

Typical Cross-Encoder

1 2 3 4 5 6 7 8 9 10 11 12
Layer

[CLS]

Query

   Document

Other [CLS]

To
ke

n 
Ty

pe

0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.00

0.02 0.01 0.01 0.01 0.01 0.00 0.00 0.01 0.03 0.02 0.09 0.38

0.20 0.16 0.04 0.07 0.08 0.02 0.02 0.04 0.22 0.39 0.29 0.37

0.77 0.82 0.94 0.92 0.90 0.97 0.97 0.95 0.74 0.58 0.61 0.25

Set-Encoder

Set-Encoder attends to other documents in early
layers, then the document to score in final layers.
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Efficient Listwise Neural Search
Results: Ranking Effectiveness

Model Parameters Effectiveness
(nDCG@10)

monoBERT base 110M 0.379
monoBERT large 340M 0.381
monoT5 base 220M 0.376
monoT5 large 3B 0.410
LiT5-Distill 220M 0.406
Set-Encoder 110M 0.406
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Set-Encoder has same effectiveness of SOTA
listwise model with half the parameters.
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Model Parameters Effectiveness
(nDCG@10)

monoBERT base 110M 0.379
monoBERT large 340M 0.381
monoT5 base 220M 0.376
monoT5 large 3B 0.410
LiT5-Distill 220M 0.406
Set-Encoder 110M 0.406

Set-Encoder has same effectiveness of SOTA
listwise model with half the parameters.

Set-Encoder has similar effectiveness to SOTA
pointwise model with 3B fewer parameters.
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Efficient Listwise Neural Search
Robustness to Initial Ranking Permutations
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Irrespective of initial document ranking,
Set-Encoder has same effectiveness.
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Efficient Listwise Neural Search
Robustness to Initial Ranking Permutations
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Irrespective of initial document ranking,
Set-Encoder has same effectiveness.

SOTA Listwise model makes document ranking
worse when given ideal ranking.
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1 Green IR
[Scells et al. 2022]

2 Efficient Listwise Neural Search
[Schlatt et. al 2024]

3 Estimating Cost of IR (discussion)
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Estimating Cost of IR
Starting the Discussion

What do we mean by cost?

cost ➜ system (time, money, energy)

❑ training efficiency?
❑ inference efficiency?
❑ energy utilisation?

cost ➜ user (cost, effort, load) [McGregor et al. 2023]

❑ cognitive costs, fatigue, spend or conserve my resources to achieve goal?
❑ cognitive or physical effort, task complexity, total labour/time to achieve goal
❑ cognitive load, demands, properties of task that regulate exertion, overload
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