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Green IR
Why?

Large (pre-trained) neural language models

o Expend high energy for training and inference
(compared to traditional models)

o The energy demands expected to continue growing
as size and complexity of models increase

o Data centers and other infrastructure
used to run these models also consume energy (and water [Zuccon et al. 2023])



https://dl.acm.org/doi/abs/10.1145/3578337.3605121

[1] Strubell, E. et al. 2019. Energy and Policy Considerations for Deep Learning in NLP. Proceedings of
the 57th Annual Meeting of the Association for Computational Linguistics




Green IR

But what are emissions?

o Energy: amount of work done
=» Measured in joules

o Power: energy per unit time
-» Measured in watts; 1 watt = 1 joule/second
=» kWh: energy consumed at a rate of 1 kilowatt in 1 hour

o Emissions: by-products created by producing power
Measured in kgCO»e; kilograms of carbon dioxide equivalent
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What about IR research?

Isn’t this just retrieval efficiency?

[1] Strubell, E. et al. 2019. Energy and Policy Considerations for Deep Learning in NLP. Proceedings of
the 57th Annual Meeting of the Association for Computational Linguistics




Green IR

Retrieval Efficiency

Speed a system can retrieve relevant information in response to a query.

Factors that can impact retrieval efficiency include:

o Size and complexity of the corpus being searched
o Effectiveness of the retrieval models or techniques being used

o Efficiency of the hardware and infrastructure used
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Retrieval Efficiency
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Retrieval Efficiency

Okay, so what does this mean for IR?
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Utilisation and Green IR

Green IR is...

‘research that yields novel results while taking into account the computational cost,
encouraging a reduction in resources spent”

(Schwartz, R. et al. 2020. Green Al. Communications of the ACM)
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Utilisation and Green IR
Green IR is...

‘research that yields novel results while taking into account the computational cost,
encouraging a reduction in resources spent”

(Schwartz, R. et al. 2020. Green Al. Communications of the ACM)

Neural methods require pre-trained LMs

o Expensive to create

o Becoming even more expensive (see: DSI and friends)

Pre-trained LMs come at a high power and emissions cost

Missing dimension of IR evaluation

o Effectiveness
o Efficiency
o Utilisation
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Utilisation and Green IR

Okay, so how can | measure this?
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Measuring Emissions

First, measure power consumption:

Q-1 (p.tptpy)

Pr= 1000
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Measuring Emissions

First, measure power consumption:

Running Time

PUE CPU, RAM, GPU power draw
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Measuring Emissions

First, measure power consumption:

PUE Running Time

) CPU, RAM, GPU power draw
Q-1 (p.+p,tpy)-
watts Pt T 1000

Next, measure emissions:
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Green IR

Measuring Emissions

First, measure power consumption:

PUE Running Time

y CPU, RAM, GPU power draw
Q-1 (p.+p,tpy)-
watts Pt T 1000

Next, measure emissions:

emissions//'kgcoze =0-p,
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Measuring Emissions

First, measure power consumption:

Next, measure emissions:

Power
emissions”kgcoze =0 - p, . consumption of
experiments
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Measuring Emissions

First, measure power consumption:

Running Time

PUE . CPU, RAM, GPU power draw
Q-1 (p.+p,tpy)-
watts P = 1000
Next, measure emissions: avg. COse (kg) per kWh
where experiments
took place
Power

emissions—"""’kgcoze =0- P; «+ consumption of
experiments
Emissions of my search engine:

kgCOe=0-A -p,
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Measuring Emissions

First, measure power consumption:

Running Time

PUE . CPU, RAM, GPU power draw
Q-1 (p.+p,tpy)-
watts 1 = 1000
Next, measure emissions: avg. COse (kg) per kWh
where experiments
took place
Power

emissions""""kgcoze = 0 - p, . consumption of
experiments
Emissions of my search engine:

Power

kgCO e=20- A + p,~~ consumption of

a single query
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Green IR

Measuring Emissions

First, measure power consumption:

Running Time

PUE . CPU, RAM, GPU power draw
Q-1 (p.+p,tpy)-
watts—P1 = 1000
Next, measure emissions: avg. COse (kg) per kWh
where experiments
took place
Power

emissions""""kgcoze =0- P; «— consumption of
experiments

Emissions of my search engine: No. queries

issued per unit
time Power

kgCO e=20- A/ + p,~~ consumption of

a single query

32 ©Harry Scells 2024
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Utilisation and Green IR

Okay, so show me what it means in IR research practice!




Green IR

How many emissions produced to obtain a single result?

34

Emissions (kgCO2¢)
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Green IR

How many emissions produced to obtain a single result?

(o2}

T 5.25
[QY)
O 45
3
2 3.75
n 3
[
O 2025
7
= 15
=
W o.75
0
> A
W &
) g§

35 ©Harry Scells 2024



Green IR

How many emissions produced to obtain a single result?
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How many emissions produced to obtain a single result?
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Green IR

How many emissions produced to obtain a single result?
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Green IR
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Green IR

What are the effectiveness-utilisation trade-offs of these methods?
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What are the effectiveness-utilisation trade-offs of these methods?
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What are the effectiveness-utilisation trade-offs of these methods?
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What are the effectiveness-utilisation trade-offs of these methods?

Effectiveness (MRR@10)
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What are the effectiveness-utilisation trade-offs of these methods?

k =1000
-------- bty st S
|
i
7777777777 N R R
; pl
|
. -
fffffffffffffffffffff
i
. )
! -
, . .
100 -
Time [ms] -
—
-—

xxxxxx

Mn

0.209

Higher eff%ctiveness

0.185 ®BM25

0

20

> @ uniCOIL+doc2query
> @TILDEv2+doc2query

—

More utilisation

40 60 80 100
Emissions (kgCO2¢)

120

0.4

MRR@10
-
g

0.38 Y. —== :
| /'” %V//

035
4 8 16 32 64 128 256 5I
Latency in ms (PISA/FAISS)

® CoCondenser-SelfDistil

% CoCondenser-EnsembleDistil
T "* m  SelfDistil

+ EnsembleDistil

+ DistiIMSE

1 4 0 33 + SPLADE
0 1 2 3 | 5 G 7
FLOPS




Green IR

Reduce, Reuse, Recycle

Reduce =» expend fewer resources

o Straightforward: simply reduce the number of experiments
o Limit expensive computations, e.g., use CPU, FPGAs over GPU

o Prior to starting any research or experiments, ask: How can | perform
research with fewer resources?
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Reduce, Reuse, Recycle

Reduce =» expend fewer resources

o Straightforward: simply reduce the number of experiments
o Limit expensive computations, e.g., use CPU, FPGAs over GPU

o Prior to starting any research or experiments, ask: How can | perform
research with fewer resources?

Reuse =» repurpose resources intended for one task to the same task

0 Reuse existing software artefacts such as data, code, or models
o Take something existing and repurpose it for the same task it was devised for

o Prior to starting any research or experiments, ask: How can | repurpose data
or code meant for one task to the same task?

Recycle =» repurpose resources intended for one task to a different task

o Recycle existing software artefacts such as data, code, or models
o Repurposing an existing artefact for a task it was not originally intended for

o Prior to starting any research or experiments, ask: How can | repurpose
existing data or code meant for one task to a different task?



(1) Green IR

[Scells et al. 2022]

(2) Efficient Listwise Neural Search

[Schlatt et. al 2024]

(3) Estimating Cost of IR (discussion)


https://dl.acm.org/doi/abs/10.1145/3477495.3531766
https://arxiv.org/abs/2404.06912

Efficient Listwise Neural Search
Motivation [Schiatt et. al 2024]

Learning task: Given a set of objects, rank them according to a ranking criterion

QE0UR Lo



https://arxiv.org/abs/2404.06912

Efficient Listwise Neural Search
Motivation [Schiatt et. al 2024]

Learning task: Given a set of objects, rank them according to a ranking criterion
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Existing architectures model either one of these properties but never both

o Trade off effective ranking for permutation invariance =» Pointwise

o Trade off efficient ranking for cross-document information =¥ Listwise


https://arxiv.org/abs/2404.06912

Efficient Listwise Neural Search
Model Architecture

Pointwise

Listwise

o More effective at the expense
of efficiency.

o Non-permutation-invariant,
cross-document information.

o Unscaleable: All permutations
of query-documents is scored.



Efficient Listwise Neural Search
Model Architecture

Pointwise

Listwise

o More effective at the expense
of efficiency.

o Non-permutation-invariant,
cross-document information.

o Unscaleable: All permutations
of query-documents is scored.
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Efficient Listwise Neural Search
Model Architecture State of the Art

Query

Document scoring:
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o Reason: Transformer is
sequence modeller; order of
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Efficient Listwise Neural Search

Model Architecture State of the Art
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Efficient Listwise Neural Search

Model Architecture State of the Art

Query
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Efficient Listwise Neural Search
Model Architecture

Set-Encoder document scoring:

o Each query-document pair only
needs to be scored once.

Set-Encoder State of the Art
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Efficient Listwise Neural Search

Model Architecture Set-Encoder State of the Art

Query
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Set-Encoder document scoring:
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Efficient Listwise Neural Search

Model Architecture Set-Encoder State of the Art

Query
P1>P2>P3 <------------ :
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Efficient Listwise Neural Search
Modelling Cross-Document Interactions with Attention
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Efficient Listwise Neural Search
Modelling Cross-Document Interactions with Attention

q dI

g, d2I

Attention(Q, K, V) = softmax(

For d;, let K% = [K{ : j # i]
Ford,, let Vi=[V/:j #1]
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Efficient Listwise Neural Search
Modelling Cross-Document Interactions with Attention

a, d1I

q’ d2I

T

Attention(Q, K, V) = softmax(Qf;)V

For d;, let K% = [K{ : j # i]
Ford,, let Vi=[V/:j #1]

Cross-document attention for d;:
Attention(Q’, [K'K'], [VIV])



Efficient Listwise Neural Search
Attention Visualised

Typical Cross-Encoder
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Efficient Listwise Neural Search
Attention Visualised

Typical Cross-Encoder

[CLS] . .26 0.21 0.22 0.27 0.26 0.18 0.06

(0]
E Query THEHS .27 0.23 0.25 0.28 0.27 0.22
o
< Document 4 0. . . 0.44 0.47
|_
Other [CLS]
Set-Encoder
icLs] X8 . .01 0.01 0.01 0.01 0.01 0.01
(0]
= IR 0.02 0.01 0.01 0.01 0.01 0.00 0.00 0.01
C
% Document X0 ) .04 0.07 0.08 0.02 0.02 0.04
|_
Other [CLS] 0. . .94 0.92 0.90 0.97 0.97 0.95

1 2 3 4 5 6 7 8 9 10 11 12
Layer

Set-Encoder attends to other documents in early

layers, then the document to score in final layers.
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Efficient Listwise Neural Search
Results: Ranking Effectiveness
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Model Parameters Effectiveness
(nDCG@10)
monoBERT base 110M 0.379
monoBERT large 340M 0.381
monoT5 base 220M 0.376
monoT5 large 3B 0.410
LiT5-Distill 220M 0.406

Set-Encoder 110M 0.406
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Efficient Listwise Neural Search
Results: Ranking Effectiveness

Model Parameters Effectiveness
(nDCG@10)
monoBERT base 110M 0.379
monoBERT large 340M 0.381
monoT5 base 220M 0.376
monoT5 large 3B 0.410
LiT5-Distill 220M 0.406
Set-Encoder 110M 0.406

Set-Encoder has same effectiveness of SOTA
listwise model with half the parameters.

Set-Encoder has similar effectiveness to SOTA
pointwise model with 3B fewer parameters.




Efficient Listwise Neural Search
Robustness to Initial Ranking Permutations



Efficient Listwise Neural Search
Robustness to Initial Ranking Permutations

Irrespective of initial document ranking,

Set-Encoder has same effectiveness.
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Efficient Listwise Neural Search
Robustness to Initial Ranking Permutations

Irrespective of initial document ranking,
Set-Encoder has same effectiveness.

SOTA Listwise model makes document ranking
worse when given ideal ranking.




(1) Green IR

[Scells et al. 2022]

(2) Efficient Listwise Neural Search

[Schlatt et. al 2024]

(3) Estimating Cost of IR (discussion)


https://dl.acm.org/doi/abs/10.1145/3477495.3531766
https://arxiv.org/abs/2404.06912

Estimating Cost of IR

Starting the Discussion &‘ e LJD
What do we mean by cost? -
cost =» system (time, money, energy)

o training efficiency?
o inference efficiency?
0 energy utilisation?

Motor Actions

cost =¥ user (cost, effort, load) [McGregor et al. 2023]
0 cognitive costs, fatigue, spend or conserve my resources to achieve goal?
o cognitive or physical effort, task complexity, total labour/time to achieve goal
o cognitive load, demands, properties of task that regulate exertion, overload



https://dl.acm.org/doi/full/10.1145/3583069

