pybool_ir.experiments.smooth#
Classes and methods for the paper “Smooth Operators for Effective Systematic Review Queries”.
TODO: This is quite messy. Needs to be cleaned up. NB: See the bottom of this file for experiments and more details, like accessing the data.
Classes
|
Variant of the QueryExperiment that performs an oracle search to determine an approximately optimal theta value. |
|
Variant of the QueryExperiment that uses precomputed results (i.e., from dense retrieval). |
|
Variant of the QueryExperiment that uses a pre-trained predictor for estimating the theta parameter. |
|
Base class for running experiments that involve execution of each atomic node in a query. |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
- class pybool_ir.experiments.smooth.OracleQueryExperiment(indexer: ~pybool_ir.index.index.Indexer, collection: ~pybool_ir.experiments.collections.Collection, query_parser: ~pybool_ir.query.parser.QueryParser = <pybool_ir.query.pubmed.parser.PubmedQueryParser object>, eval_measures: ~typing.List[~ir_measures.measures.base.Measure] | None = None, run_path: ~pathlib.Path | None = None, filter_topics: ~typing.List[str] | None = None, ignore_dates: bool = False, date_field: str = 'dp')#
Bases:
QueryExperiment
Variant of the QueryExperiment that performs an oracle search to determine an approximately optimal theta value.
- class pybool_ir.experiments.smooth.PrecomputedQueryExperiment(indexer: ~pybool_ir.index.index.Indexer, collection: ~pybool_ir.experiments.collections.Collection, query_parser: ~pybool_ir.query.parser.QueryParser = <pybool_ir.query.pubmed.parser.PubmedQueryParser object>, eval_measures: ~typing.List[~ir_measures.measures.base.Measure] | None = None, run_path: ~pathlib.Path | None = None, filter_topics: ~typing.List[str] | None = None, ignore_dates: bool = False, date_field: str = 'dp')#
Bases:
QueryExperiment
Variant of the QueryExperiment that uses precomputed results (i.e., from dense retrieval).
- class pybool_ir.experiments.smooth.PredictorQueryExperiment(indexer: ~pybool_ir.index.index.Indexer, collection: ~pybool_ir.experiments.collections.Collection, query_parser: ~pybool_ir.query.parser.QueryParser = <pybool_ir.query.pubmed.parser.PubmedQueryParser object>, eval_measures: ~typing.List[~ir_measures.measures.base.Measure] | None = None, run_path: ~pathlib.Path | None = None, filter_topics: ~typing.List[str] | None = None, ignore_dates: bool = False, date_field: str = 'dp')#
Bases:
QueryExperiment
Variant of the QueryExperiment that uses a pre-trained predictor for estimating the theta parameter.
- class pybool_ir.experiments.smooth.QueryExperiment(indexer: ~pybool_ir.index.index.Indexer, collection: ~pybool_ir.experiments.collections.Collection, query_parser: ~pybool_ir.query.parser.QueryParser = <pybool_ir.query.pubmed.parser.PubmedQueryParser object>, eval_measures: ~typing.List[~ir_measures.measures.base.Measure] | None = None, run_path: ~pathlib.Path | None = None, filter_topics: ~typing.List[str] | None = None, ignore_dates: bool = False, date_field: str = 'dp')#
Bases:
RetrievalExperiment
Base class for running experiments that involve execution of each atomic node in a query.
- class pybool_ir.experiments.smooth.SmoothAND(theta: float = 1.0)#
Bases:
SmoothOperator
- class pybool_ir.experiments.smooth.SmoothANDPredictor(clf: DecisionTreeRegressor, theta: float = 1.0)#
- class pybool_ir.experiments.smooth.SmoothNOT(theta: float = 1.0)#
Bases:
SmoothOperator
- class pybool_ir.experiments.smooth.SmoothNOTPredictor(clf: DecisionTreeRegressor, theta: float = 1.0)#
Bases:
SmoothOperatorPredictorMixin
,SmoothOR
- class pybool_ir.experiments.smooth.SmoothOR(theta: float = 0.0)#
Bases:
SmoothOperator
- class pybool_ir.experiments.smooth.SmoothORPredictor(clf: DecisionTreeRegressor, theta: float = 0.0)#
Bases:
SmoothOperatorPredictorMixin
,SmoothOR
- class pybool_ir.experiments.smooth.SmoothOperatorPredictorMixin(clf: BaseDecisionTree, *args, **kwargs)#
Bases:
SmoothOperator
,ABC